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Chapter 1

Valued Fields

An absolute value on a �eld K is a function |·| : K → R≥0 such that

(i) |x| = 0 if and only if x = 0;
(ii) |xy| = |x||y|;
(iii) |x + y| ≤ |x|+ |y|.

Example. Take K = Q, R, or C and let |·| be the usual absolute value, which we will

denote |·|∞.

Example. For any �eld K, let

|x| =

{
0 x = 0
1 x 6= 0

called the trivial absolute value on K.

From (i) and (ii) it follows that |1| = |−1| = 1. Generally, if x ∈ K such that xn = 1
then |x| = 1. In particular, if K = Fpn is a �nite �eld, or K = F̄p, then K has only

trivial absolute value. Also note that |x/y| = |x|/|y| for y 6= 0 and |xn| = |x|n.

Example (p-adic Absolute Value on Q). Fix a prime p and 0 < α < 1. Write x ∈ Q∗

as

x = pn a

b

with n ∈ Z and a, b coprime to p. Then de�ne |x| = |pna/b| = αn. This is called the

p-adic absolute value on Q. It is indeed an absolute value, for if x = pna/b, y = pmc/d
then

|xy| = |pn+m ac

bd
| = αm+n = |x||y|

|x + y| = |pmin{n,m} ?

bd
| = |pmin{n,m}|| ?

bd
|

≤ αmin{n,m} = max{|x|, |y|} ≤ |x|+ |y|

So a rational number is small with respect to |·| if and only if it is divisible by a large

power of p. To remove ambiguity in the choice of α, we make the following de�nition.

De�nition. Two absolute values |·|, ‖·‖ on K are equivalent if there exists c > 0 such

that

|x| = ‖x‖c

for all x ∈ K. The normalised p-adic absolute value is the one with α = 1/p and it is

denoted |·|p.
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Example. Let p = 5. Then

|5n|5 = 5−n |10|5 =
1
5

| 1
10
|5 = 5 |2

3
|5 = 1

If an absolute value on K satis�es the following stronger condition (iii')

|x + y| ≤ max{|x|, |y|}

we call it ultrametric or non-Archimedean. Otherwise, we say it is Archimedean.

Theorem 1.1 (Ostrowski). Any non-trivial absolute value |·| on Q is equivalent to

either |·|∞ or |·|p for some p.

Proof. Let a, b > 1 be integers and write bn in base a,

bn = cmam + cm−1a
m−1 + · · ·+ c0

with ci ∈ [0, a− 1]. Let M = max{|1|, . . . , |a− 1|}. Then

|bn| ≤ |cm||a|m + · · ·+ |c0|
≤ (m + 1)M max{|a|m, . . . , |1|}
≤ (n loga b + 1)M max{1, |a|m}

Taking nth roots and letting n→∞,

|b| ≤ max{1, |a|loga b} (∗)

Case 1. Assume |b| > 1 for some integer b > 1. By (∗),

|b| ≤ max{1, |a|loga b} = |a|loga b

so |a| > 1 for all a > 1. Interchanging a and b in (∗),

|a| ≤ |b|logb a

so

|b|
1

log b = |a|
1

log a

Equivalently, |a| = aλ for all a ≥ 1 and some λ independent of a, so |·| ∼ |·|∞.

Case 2. Suppose |b| ≤ 1 for all integers b ≥ 1. Then there is a b > 1 such that |b| < 1,
otherwise |·| is trivial. Take such a b and write b = pn1

1 · · · p
nk
k . Then

1 > |b| = |p1|n1 · · · |pk|nk

so there exists p such that |p| < 1. It su�ces to show that |q| = 1 for all primes q 6= p,
and it then follows that |·| ∼ |·|p.
Suppose |p| < 1 and |q| < 1 for some p 6= q. Take n, m ≥ 1 such that |pn| < 1/2,
|qm| < 1/2. As pn, qm are coprime, 1 = xpn + yqm for some x, y ∈ Z, so

1 ≤ |x||pn|+ |y||qm| < 1
2

+
1
2

= 1

contradiction.
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We do not need the following result, but there is a complete classi�cation of Archimedean

absolute values.

Theorem 1.2. If |·| is an Archimedean absolute value on a �eld K then there exists an

injection K ↪→ C such that |·| ∼ |·|∞ on C.





Chapter 2

Non-Archimedean Absolute Values and Valuations

From now on, |·| : K → R≥0 is non-Archimedean and non-trivial. We sometimes say K
is non-Archimedean with a �xed |·| in mind.

Pick 0 < α < 1 and write |x| = αv(x), i.e., let v(x) = logα|x|.

K∗ → R>0
logα−−→ (R,+)

Then v(x) is a valuation, an additive version of |·|.

De�nition. The map v : K∗ → R is a valuation if

(i) v(K∗) 6= {0};
(ii) v(xy) = v(x) + v(y);
(iii) v(x + y) ≥ min{v(x), v(y)}.

Valuations v and cv, for c > 0 a real constant, are called equivalent. A valuation

determines a non-trivial non-Archimedean absolute value and vice versa.

We extend v to K formally by letting v(0) = ∞. The image v(K∗) is an additive

subgroup of R, the value group of v. If it is discrete, i.e., isomorphic to Z, we say v is a

discrete valuation. If v(K∗) = Z, we call v normalised discrete valuation.

We will only study discrete valuations.

Example. Let K = Q and p a prime. Then

vp = ordp : Q∗ 3 pn a

b
7→ n ∈ Z

is the p-adic valuation,

|x|p =
(

1
p

)vp(x)

Alternatively,

vp(x) = max
r∈Z
{r : x ∈ prZ}

Generally, if K is a number �eld with [K : Q] <∞, let {0} ≤ P ⊂ OK be a prime ideal.

Then de�ne

vP : K → Z, x 7→ max
r∈Z
{r : x ∈ P rOK}

This is a normalised discrete valuation and every valuation on K is of this form, i.e.,

there is an analogue of Ostrowski's theorem for number �elds.



6 Non-Archimedean Absolute Values and Valuations

Example. Let K = k(t). De�ne

v0

(
tn

p(t)
q(t)

)
= n

where p(0), q(0) 6= 0. This is a normalised discrete valuation, the order of zeros or poles

at t = 0. In fact, for any a ∈ K we may de�ne

va

(
(t− a)n p(t)

q(t)

)
= n

where p(a), q(a) 6= 0. For instance, let f(t) = t2(t− 1)/(t− 2)5. Then

v0(f) = 2 v1(f) = 1 v2(f) = −5 va(f) = 0

for all other a ∈ k. There is also

v∞

(
p(t)
q(t)

)
= deg q(t)− deg p(t) ∈ Z

which again is a valuation, called the order at ∞.

If X = C ∪ {∞} is the Riemann sphere let K = C(z) be the �eld of meromorphic

functions on X. The above valuation is

va(f) = ordz=a f(z)

for every a ∈ X, including ∞.

If k = C, or in general, an algebraically closed �eld, then these are the only valuations

on K = k(t) with v(k∗) = {0}.

2.1 Aside on Algebraically Closed Fields

De�nition. A �eld K is algebraically closed if the following equivalent conditions are

satis�ed.

(i) Every polynomial of degree n over K has precisely n roots, counted with multi-

plicity.

(ii) Every non-constant polynomial is a product of linear factors.

(iii) If f ∈ K[X] is non-constant and irreducible then f is linear.

(iv) K has no non-trivial �nite extensions.

Example. C is algebraically closed. Q, R, Fpn , k(t) are not algebraically closed.

Theorem 2.1. Let K be any �eld. Then there exists an algebraically closed �eld K̄
unique up to isomorphism such that K ⊂ K̄ and every element of K̄ is algebraic over

K. K̄ is called an algebraic closure.

Example. C is algebraically closed so C̄ = C. R̄ = C. Q̄ is the set of α ∈ C satisfying

polynomials with rational coe�cients.

Exercise 1. Show that Q̄ as de�ned above is an algebraically closed �eld. Further show

that there exists a sequence (Kn)n≥1 of �nite Galois extensions Q ⊂ K1 ⊂ K2 ⊂ · · ·
such that Q̄ =

⋃
n≥1 Kn.
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2.2 Algebraic Properties of Valuations

Let v : K∗ → R be a valuation corresponding to the absolute value |·| : K → R≥0. Then

O = Ov = OK = {x ∈ K : v(x) ≥ 0} = {x ∈ K : |x| ≤ 1}

is a ring, called the valuation ring of v. K is its �eld of fractions, and

x ∈ K \ O =⇒ 1
x
∈ O

The set of units in O is

O× = {x ∈ K : v(x) = 0} = {x ∈ K : |x| = 1}

and

M = {x ∈ K : v(x) > 0} = {x ∈ K : |x| < 1}
is an ideal in O. Because O = O× ∪M , M is a unique maximal ideal, so O is local.

k = O/M is a �eld, called the residue �eld of v or of K.

Suppose v : K∗ � Z is normalised discrete. Take π ∈ M with v(π) = 1, called a

uniformiser. Then every x ∈ K∗ can be written uniquely as

x = uπn

for a unit u ∈ O× and n ∈ Z. Every x ∈ O can be written uniquely as

x = uπn

for a unit u ∈ O× and n ∈ Z≥0. Every x ∈M can be written uniquely as

x = uπn

for a unit u ∈ O× and n ≥ 1. In particular, M = (π) is principal. Moreover, every ideal

I ⊂ O is principal,

O ⊃ I 6= (0) =⇒ I = (πn)

where n = min{v(x) : x ∈ I}, so O is a principal ideal domain (PID).

Example. Let K = Q, v = vp. Then

O =
{

x

y
: (y, p) = 1

}
M =

{
x

y
: (y, p) = 1, p | x

}
= (p)O

O/M = k ∼= Fp,
x

y
7→ x mod p

y mod p

Example. Let K = k(T ) and consider va for some a ∈ k. Then

O =
{

f

g
: g(a) 6= 0

}
M =

{
f

g
: g(a) 6= 0, f(a) = 0

}
O/M

∼−→ k, f 7→ f(a)

the evaluation map.
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De�nition. A discrete valuation ring (DVR) is a local integral PID, which is not a �eld.

Theorem 2.2. (i) Suppose v : K∗ � Z is a valuation. Then Ov is a DVR.

(ii) If R is a DVR then there exists a unique valuation v on its �eld of fractions K
such that R = Ov.

Proof. (i) Ov ⊂ K is a subring, hence is an integral domain; we have already shown

it is local and a PID. π−1 ∈ K \ O, so O is not a �eld.

(ii) Let R be a DVR. R is local so has a unique maximal ideal M , and R is a PID so

M = (π) for some π ∈ R. (Recall that if R is a PID then R is also a UFD.) If

π′ is another irreducible element then (π′) is maximal, hence (π) = (π′) so π′ is
associate to π. As R is a UFD, every element is uniquely of the form uπn, u ∈ R
a unit.

Now de�ne v on R by letting v(uπn) = n, and extend to K by v(x/y) = v(x)−v(y).
Check it is a valuation.

De�nition. Let R ⊂ S be rings. Then x ∈ S is integral over R if

xn + an−1x
n−1 + · · ·+ a1x + a0 = 0

for some ai ∈ R. The integral closure of R in S is

{x ∈ S : x integral over R}

This is a ring, contained in S and containing R.

Example. Let R = Z, S = C. Then the integral closure is the ring of algebraic integers.

A domain R is integrally closed if R is its integral closure in its �eld of fractions. Equiv-

alently, for all y ∈ Frac(R), y is integral over R if and only if y ∈ R.

Theorem 2.3. Let R be a domain. Then R is a DVR if and only if R is Noetherian,

integrally closed, and has a unique non-zero prime ideal.

Proof. Suppose R is a DVR. We know every ideal is principal and hence �nitely gener-

ated, so R is Noetherian.

Now take x ∈ Frac(R) = K, x 6∈ R, i.e., v(x) = m < 0, but satisfying

xn + an−1x
n−1 + · · ·+ a1x + a0 = 0

Then

mn = v(xn) = v(−xn) = v(an−1x
n−1 + · · ·+ a1x + a0) ≥ m(n− 1)

a contradiction.

Every ideal (0) 6= I ⊂ R is of the form I = (πk), and (πm) is prime if and only if

m = 1. Thus (π) is the unique non-zero prime ideal. This completes one direction of

the proof.
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Lemma 2.4 (Poor Man's Factorisation). Let R be Noetherian and I ⊂ R an ideal.

Then there exists prime ideals P1, . . . , Pn such that

I ⊂ Pi,
n∏

i=1

Pi ⊂ I

Proof. Let S be the set of ideals I not having this property. Assume S 6= ∅ and take

I ∈ S to be a maximal element, which is possible as R is Noetherian. Prime ideals are

not in S, so I is not prime, i.e., there exist a, b ∈ R such that a, b 6∈ I and ab ∈ I. As I
is maximal,

I ( I + (a), I ( I + (b) =⇒ I + (a), I + (b) 6∈ S

Thus there exist Pi, Qj such that∏
i

Pi ⊂ I + (a) Pi ⊃ I + (a) ⊃ I∏
j

Qj ⊂ I + (b) Qj ⊃ I + (b) ⊃ I

Now (∏
i

Pi

)(∏
j

Qj

)
⊂ (I + (a))(I + (b)) ⊂ I

a contradiction.

Proof (of Theorem 2.3). Conversely, let M be the unique non-zero prime ideal. Then

R is maximal and local. It is now enough to show that M is principal since then every

ideal is principal.

Let y ∈M , y 6= 0. Poor man's factorisation gives

Mn ⊂ (y) ⊂M

for some n. Let n be the smallest such. Then

Mn ⊂ (y),Mn−1 6⊂ (y)

Let x ∈ Mn−1 \ (y). Set z = x/y ∈ Frac(R), z 6∈ R. (At this stage, morally, z = π−1.)

Then

xM ⊂Mn ⊂ (y) =⇒ zM ⊂ R

so zM is an ideal in R. Either zM = R, so M = (z−1)R and hence M is principal.

Or zM is a proper ideal, zM ⊂ M . As R is Noetherian, M is �nitely generated. Let

M = (x1, . . . , xn), say. Multiplying by z,zx1
...

zxn

 =

a11x1 + · · ·+ a1nxn
...

an1x1 + · · ·+ annan


with aij ∈ R, i.e.,

A(xi) = z(xi)

working over Frac(R). This means det(A − zI) = 0. Note det(A − zI) is a monic

polynomial in z with coe�cients in R. Since R is integrally closed, z ∈ R.
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Exercise 2. Show that if M is principal then every ideal is principal.

Example. (i) R = {m/n ∈ Q : (n, p) = 1};
(ii) R = {f/q ∈ k(t) : g(a) 6= 0}.

Example. (i) Let R = Z, or R = OK where K is a number �eld. This is Noetherian

and integrally closed, but has many non-zero prime ideals.

(ii) Let v : K∗ → R be a non-discrete valuation. Then OK is integrally closed and has

a unique non-zero prime ideal, but is not Noetherian.

(iii) Let v : Q∗ → Z be the 2-adic valuation and Ov be its valuation ring. Then R =
Ov[2i] is local, Noetherian and has a unique non-zero prime ideal, but is not

integrally closed.
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Completion

Suppose K, |·| is any valued �eld. Then K is a metric and topological space, with metric

d(x, y) = |x− y|

and the topology de�ned by the open balls

Ba,r = {x ∈ K : |x− a| < r}

We say xn → x if |xn−x| → 0 as n→∞ and
∑∞

n=1 an = A if
∑N

n=1 an → A as N →∞.

Properties of the absolute value imply that if xn → x, yn → x then xn ± yn → x ± y,
xnyn → xy, and 1/xn → 1/x provided x 6= 0. Hence +,× : K×K → K and (·)−1 : K∗ →
K∗ are continuous maps.

De�nition. {xn}n∈N is a Cauchy sequence if |xn − xm| → 0 as n, m→∞, i.e.,

∀ε > 0 ∃N ∈ N ∀m,n > N |xn − xm| < ε

K is complete with respect to |·| is every Cauchy sequence converges.

Example. R, |·|∞ and C, |·|∞ are the only two Archimedean complete �elds. Q, |·|∞ is

non complete, R, |·|∞ is its completion. Q, |·|p is not complete.

Exercise 3. Argue by countability that Q, |·|∞ and Q, |·|p are not complete since there

are uncountably many Cauchy sequences.

The topological completion of K with respect to |·| can be made into a �eld, called the

completion K̂ of K with respect to |·|. This is constructed as follows.

Let C be the set of Cauchy sequences in K, and note this is a ring containing the ideal

I of Cauchy sequences tending to 0. De�ne K̂ = C/I, which is a ring.

Then (xk) ∈ K̂∗ is a Cauchy sequence with xk 6→ 0. Thus for some ε > 0 and su�ciently

large k, |xk| > ε. Hence (1/xk) is a Cauchy sequence in K̂∗ and so K̂ is a �eld.

Note there is a natural injection K ↪→ K̂ by x 7→ (x, . . . ). We can extend |·| from K to

K̂ by

|(xn)| = lim
n→∞

|xn|
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3.1 Properties

(i) K̂ is a complete valued �eld, |·|K̂ extends |·|K ;

(ii) K ↪→ K̂ is dense;

(iii) K = K̂ if and only if K is complete;

(iv) K is non-Archimedean if and only if K̂ is non-Archimedean;

(v) Equivalent absolute values on K give rise to isomorphic completions (as �elds and

vector spaces);

(vi) If φ : K ↪→ L is an inclusion of valued �elds then there exists a unique φ̂ : K̂ ↪→ L̂
extending φ, and this is de�ned by φ̂((xn)n) = (φ(xn))n.

Exercise 4. Check the above statements.

Example. Let K, |·| be non-Archimedean. Theorem 1.2 gives

Q, |·|∞ ↪→ K, |·| ↪→ C, |·|∞

Taking completions, R ⊂ K̂ ⊂ C so K̂ ∼= R or C. In particular, R and C are the only

complete Archimedean �elds.



Chapter 4

Local Fields

From now on, we assume every absolute value is non-trivial.

De�nition. Let K, |·| be a valued �eld. K, |·| is a local �eld if it is locally compact as

a topological space.

We recall the following properties of topological spaces.

(i) A topological space X is compact if every open cover of X has a �nite subcover.

(ii) A topological space X is locally compact if for every open set U ⊂ X and x ∈ U
there is an open set U0 such that x ∈ U0 ⊂ U and U0 has compact closure.

(iii) A metric space X is locally compact if and only if for every x ∈ X there exists

R > 0 such that for all 0 < r < R the ball Br(x) is compact.

Lemma 4.1. The following statements are equivalent.

(i) K is local.

(ii) There exists a compact disc Ba,≤r.

(iii) All discs Ba,≤r are compact.

Proof. (iii) =⇒ (i) =⇒ (ii) is clear.

We now show (ii) =⇒ (iii). Take a compact disc Ba,≤r. The translation x 7→ x + a is

a homomorphism. Thus B0,≤r is compact, so B0,≤s is compact for all 0 < s ≤ r as a

closed subset of a compact set. Now |·| is non-trivial so there exists α ∈ K such that

|α| > 1. The map K → K, x 7→ αx is continuous so B0,≤|α|nr is compact for all n ∈ N.
Hence B0,≤s is compact for all 0 < s and again by translation we are done.

Proposition 4.2. A local �eld K, |·| is complete.

Proof. Assume not. Pick x ∈ K̂ \K and a sequence (xn)n in K with xn → x.

Let B be any closed disc that contains all xn for n ≥ N and some N ∈ N. (For example,

there exists N ∈ N such that |xn − x| < 1 for all n ≥ N ; now take B = BxN ,≤2.) B is

compact by the above lemma.

Let Un = {y ∈ K : |y − x| > 1/n}. These are open sets and give an open cover of B,

B =
⋃
n≥1

(Un ∩B)

but it has no �nite subcover.
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Corollary 4.3. R and C are the only Archimedean local �elds.

Now suppose K, |·| is non-Archimedean. The following are consequences of the condition

|x + y| ≤ max{|x|, |y|}.
(i) If |y| < |x| then |x± y| = |x|;
(ii) If x1 + · · ·+ xn = 0 then the two largest absolute values are equal.

(iii) (xn)n is Cauchy if and only if xn − xn−1 → 0.
(iv) In a complete �eld,

∑∞
n=1 xn converges if and only if xn → 0.

4.1 Topological Properties

(i) If x ∈ Ba,<r then Bx,<r = Ba,<r, so every point in the disc is a centre.

(ii) If B,B′ are open discs with B ∩B′ 6= ∅ then B ⊂ B′ or B′ ⊂ B.

(iii) Every open disc is also closed.

Proof. Let K =
⋃

a∈K Ba,<r, a disjoint union of open discs. Then one is the complement

of the union of all others (on choosing the radius appropriately small), so every one is

closed.

Theorem 4.4. Suppose K, |·| is non-Archimedean and has the corresponding valuation

v. Then the following are equivalent.

(i) K is a local �eld.

(ii) The valuation ring O = Ov is compact.

(iii) K is complete, v is discrete and the residue �eld k = O/M is �nite.

Proof. (i) ⇐⇒ (ii): O = {x ∈ K : |x| ≤ 1} = B0,≤1, and now apply the lemma.

(i),(ii) =⇒ (iii): K is complete by Proposition 4.2. Write

O =
⋃
x∈O

x + M =
⋃
x∈O

Bx,<1

a disjoint union of open discs. O is compact so there exists a �nite subcover, hence

O/M is �nite. Now take y ∈M \ {0} and write

O =
⋃
x∈O

x + yO

This is a �nite union, so the valuation is discrete.

(iii) =⇒ (ii): Exercise.
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Discrete Valuation Rings and Completions

Lemma 5.1. Let O be a DVR and v a valuation of it. Let K = Frac(O), M = (π) for
a uniformiser π, and O/M = k the residue �eld.

Let A = {ai} be any set of representatives of O/M , ai ∈ O, say 0 ∈ A. Then every

x ∈ K∗ can be written as

x = πv(x)
∞∑

n=0

anπn

with an ∈ A and a0 6= 0. We say that ai are the digits in the π-adic expansion of x.

Proof. Write x = πv(x)u for some unit u ∈ O×. Reducing mod π,

O/M
∼−→ k

u 7→ ū

There exists a unique a0 ∈ A such that ā0 = ū, so a0− u ∈M . Now write u = a0 + πu1

and reduce u1 mod π. Then there exists a unique a1 ∈ A such that ā1 = ū1. Now write

u = a0 + πa1 + π2u2 and proceed. We obtain partial sums

SN =
N∑

n=0

anπn → u

in the topology de�ned by v, because v(Sn − u) ≥ N implies SN → u. Clearly the an

are unique.

Remark. (i) The open balls in K are of the form x+πnO, which is the set of elements

of K whose digits coincide with those of x up to an−1.

(ii) A sequence (xk)k in K is Cauchy if and only if the digits of xk eventually stabilise.

(iii) K is complete with respect to |·| if and only if every Cauchy sequence converges if

and only if the inclusion given by the lemma,

K ↪→
{
power series

∞∑
n=n0

anπn, an ∈ A

}

is an equality. In general, the RHS is equal to K̂.
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(iv) K,O,M, v induce K̂, Ô, M̂ , v̂. From the description above, the valuation on K̂ is

still discrete.

K∗
� _

��

v
// Z

ι

��
K̂∗

v̂
// Z

Exercise 5. O/Mn → Ô/M̂n is an isomorphism. In particular, the residue �elds are

the same and uniformisers stay uniformisers.



Chapter 6

p-adic Numbers

Consider Q with the p-adic absolute value |·|p and the p-adic valuation vp. Then the

valuation ring is O = {a/b : p - b}, the maximal ideal is M = (p) and the residue �eld is

O/M
∼−−−−−→

mod p
Fp

De�nition. The �eld of p-adic numbers Qp is the completion of Q with respect to |·|p.
The ring of p-adic integers Zp is its valuation ring. Let π = p and A = {0, 1, . . . , p− 1}
and apply Lemma 5.1.

Q ↪→
{ ∞∑

n=n0

anpn : an ∈ {0, 1, . . . , p− 1}
}

= Qp

Z ↪→ O ↪→
{ ∞∑

n=0

anpn : ai ∈ {0, 1, . . . , p− 1}
}

= Zp

MZp = (p) =
{ ∞∑

n=1

anpn : ai ∈ {0, 1, . . . , p− 1}
}

Zp/MZp = Fp

Example. Let p = 3 and take A = {0, 1, 2}.
(i) x = 106 = 1 + 2× 3 + 2× 32 + 34. In general, if x ∈ Zp with x =

∑∞
n=0 anpn then

x ∈ Z≥0 if and only if this expansion termintates.

(ii) x = 1/2 ∈ Z3. Then
1
2

mod 3 =
1̄
2̄

= 2̄ ∈ F3

and this lifts to 2 ∈ A, giving the 0th digit.

1
2

= 2 +
−3
2

= 2 + 3
−1
2

Now
−1
2

mod 3 =
−1
2̄

= 1̄ ∈ F3

which lifts to 1 ∈ A, giving the 1st digit. Continuing this process,

1
2

= 2 + 1 · 3 +
−9
2

= 2 + 1 · 3 + 32−1
2

= 2 + 1 · 3 + 1 · 32 + 1 · 33 + · · ·
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Exercise 6. Suppose x ∈ Qp. Then x ∈ Q if and only if its p-adic expansion is eventually
periodic.

Adddition and multiplication work as for decimal expansion, for example,

1
2

= 2 + 3 + 32 + 33 + · · ·

+
1
2

= 2 + 3 + 32 + 33 + · · ·
1
2

+
1
2

= 4 + 2 · 3 + 2 · 32 + 2 · 33 + · · ·

= (1 + 3) + 2 · 3 + 2 · 32 + 2 · 33 + · · · = 1

where the �rst circle distinguishes the �rst digit, the second circle distinguishes the �rst

two digits, etc.

Zp is topologically homeomorphic to a Cantor set.

6.1 Power Series in Zp

(i) The geometric series
1

1− x
= 1 + x + x2 + · · ·

converges (in any complete DVR) if and only |x| < 1 if and only if x ∈ pZp. For

example, in Z3,

1
2

+ 1 +
1

1− 3
= 1 + (1 + 3 + 32 + · · · ) = 2 + 3 + 32 + 33 + · · ·

(ii) The p-adic logarithm has expansion

logp(1 + x) = x− x2

2
+

x3

3
− · · ·

It is left as an exercise to show this converges for x ∈ Qp if and only if |x| < 1 if

and only if x ∈ pZp.

(iii) The exponential function

exp(x) =
∞∑

n=0

xn

n!

This converges on pZp for p > 2 and on 4Z2 for p = 2.
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6.2 Additive Structure of Zp

Zp ⊂ Qp is a subgroup of a �eld of characteristic 0, hence it is a torsion-free abelian

group.

We have the following �ltration by open and closed subgroups

Zp ⊃ pZp ⊃ p2Zp ⊃ · · ·

where

pnZp/pn+1Zp
∼= Z/pZ

x 7→ nth p-adic digit

6.3 Multiplicative Structure

We know

x =
∞∑

n=0

anpn

is a unit, i.e., in Z∗p if and only if a0 6= 0. Z∗p the multiplicative group of units. We have

a �ltration of subsets

Z∗p ⊃ 1 + pZp ⊃ 1 + p2Zp ⊃ · · ·

and upon writing U0 = Z∗p, U1 = 1 + pZp, U2 = 1 + p2Zp, etc. we have, for n ≥ 1,

Un = ker
(
Z∗p → (Z/pnZ)∗, x 7→ x mod pn

)
hence this is a subgroup.

U0/U1
∼−−−−−→

mod p
(Z/pZ)∗ n = 0

Un/Un+1
∼−→ (Z/pZ,+) n ≥ 1

These are even isomorphisms of topological groups, under the convention that �nite

groups are equipped with the discrete topology.

Theorem 6.1. The following are isomorphisms of topological groups

Z∗p ∼= U1 × (Z/pZ)∗ ∼= Zp × (Z/pZ)∗ p > 2

Z∗p ∼= U2 × (Z/4Z)∗ ∼= Zp × {±1} p = 2

Proof. In the cases p > 2 and p = 2, respectively, consider the maps

exp : pZp → 1 + pZp = U1 log : 1 + pZp → pZp p > 2

exp : p2Z2 → 1 + p2Zp = U2 log : 1 + p2Zp → p2Zp p = 2

These are continuous homomorphisms of groups, and they are inverses to each other.

Thus

U1
∼= Zp p > 2

U2
∼= Zp p = 2
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[To prove that the these are indeed inverses and homomorphisms, we need to check that

exp(log(1 + z)) = 1 + z

log(exp(z)) = z

exp(z + w) = exp(z) exp(w)

formally as power series, e.g.,

exp(log(1 + z)) =
∑
m≥0

1
m!

(∑
n≥1

(−z)n

n

)m

= 1 + z

This is true on R, and now we can use uniqueness of Taylor series.]

Also

Z∗p/U1
∼= (Z/pZ)∗ p > 2

Z∗p/U2
∼= (Z/p2Z)∗ = (Z/4Z)∗ ∼= {±1} p = 2

That is, we have an exact sequence of groups

0→ Zp → Z∗p → (Z/pZ)∗ → 0

and we want to show that is splits.

[The sequence

0→ A
α−→ B

β−→ C → 0

of abelian groups is exact if A
α−→ B is injective and

B/A
∼−→
β

C

An exact sequence splits if there exists a map γ : C → B such that β ◦ γ = ι, or
equivalently, if A× C

∼−→ B via (a, c) 7→ α(a) + γ(c).

For example,

0→ Z i1−→ Z× Z/2Z p2−→ Z/2Z→ 0

splits but

0→ Z ×2−−→ Z mod 2−−−−−→ Z/2Z→ 0

does not split.]

Consider �rst the case p = 2. {±1} ↪→ Z∗p. It is clear that

{±1} ⊂ Z∗ ⊂ Z∗p, {±1} ↪→ Z∗2
mod 4−−−−−→ {±1}

is the identity.

Now assume p > 2. We want (Z/pZ)∗ ↪→ Z∗p ↪→ Q∗
p, i.e., what we want is the group

of (p − 1)th roots of unity inside Qp. Let 1 ≤ a ≤ p − 1. The details of the following

argument are left as an exercise.

Suppose (apn
)n≥1 is a Cauchy sequence. Then, as Qp is complete, apn → x ∈ Qp; in fact

x ∈ Zp as Zp ⊂ Qp is closed. From x ≡ a (mod p) and by continuity, we see that there
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are at least p − 1 (p − 1)th roots of unity in Qp, namely one for each a. Now use that

Qp is a �eld to deduce there are precisely p− 1 of them. They form a group µp−1 under

multiplication.

This gives maps

(Z/pZ)∗ a 7→lim apn

−−−−−−→ Z∗p Z∗p
mod p−−−−−→ (Z/pZ)∗

and the composition is the identity.

Corollary 6.2.

Q∗
p
∼= Z× Z∗p ∼=

{
Z× Zp × (Z/pZ)∗ p > 2
Z× Zp × {±1} p = 2

Corollary 6.3. There are exactly p− 1 roots of unity in Qp for p > 2, and 2 in Q2.

Proof. Note that Z and Zp are torsion-free.

Corollary 6.4. For p > 2,

Q∗
p/Q∗

p
2 ∼= Z/2Z× Zp/2Zp × (Z/pZ)∗/(Z/pZ)∗2 ∼= {1, p, η, ηp}

for a non-residue η, upon writing Z/2Z ∼= {1, p}, Zp/2Zp
∼= {1} as 2 is a unit in Z∗p, and

(Z/pZ)∗/(Z/pZ)∗2 ∼= Z/2Z ∼= {1, η}.
For p = 2,

Q∗
p/Q∗

p
2 ∼= {±1,±2,±5,±10}

Corollary 6.5. Qp has three quadratic extensions Qp(
√

p), Qp(
√

η), and Qp(
√

ηp) for
p > 2. For p = 2, Qp has seven quadratic extensions.

Remark. Compare the last corollary with the following. R∗/R∗2 = {±1}, R has one

quadratic extension R(i) = C, and Q∗/Q∗2 is in�nite.

Note 1. Suppose K is a �eld with char(K) 6= 2. Then quadratic extensions of K are

in one-to-one correspondence with non-trivial elements of K∗/K∗2 via

K(
√

d) 7→ d

K[X]/(X2 + aX + b)←[ a2 − nb

Note 2. Suppose p 6= 2. Under the logarithm map,

U1 = 1 + pZp → pZp

Un = 1 + pnZp → pnZp

and pZp ⊃ pnZp is the unique subgroup of index pn−1 as this is true on the LHS.

Corollary 6.6. Suppose p 6= 2. Then

(Z/pnZ)∗ ∼= Z∗p/Un
∼= (Z/pZ)∗ × (Z/pn−1Z)

where for the last group on the RHS, U1/Un
∼= pZp/pnZp. The RHS is a product of

cyclic groups of coprime order, so (Z/pnZ)∗ is cyclic, which is important in basic number

theory.
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Corollary 6.7. Suppose p = 2. Then

(Z/2nZ)∗ ∼= (Z/2Z)× (Z/2n−2Z)

generated by −1 and 5.

Note 3. Let u ∈ Z∗p. The following are equivalent.

(i) u is a square.

(ii) u mod pn is a square in (Z/pnZ)∗ for all n ≥ 1.
(iii) If p > 2, u mod p is a square in (Z/pZ)∗. Otherwise, if p = 2, u mod 8 is a

square in (Z/8Z)∗.

Lemma 6.8. Consider the following system of polynomial equations in Z or Zp,

V :


f1(x1, . . . , xk) = 0
...

fr(x1, . . . , xk) = 0

Then V has p-adic solution x ∈ Zk
p if and only if V has a solution modulo pn for all

n ≥ 1. In di�erent notation, V (Zp) 6= ∅ if and only if V (Z/pnZ) 6= ∅ for all n ≥ 1.

Proof. The `if' direction is obvious. For the `only if' direction, take x(n) ∈ Zk
p with

fi(x(n)) ≡ 0 (mod pn) for all i = 1, . . . , r. As Zk
p is compact, there exists a convergent

subsequence x(ni) → x ∈ Zk
p, and by continuity fi(x) = 0 for i = 1, . . . , r.

We now consider the following setting. Let K be complete with respect to the non-

Archimedean absolute value |·| and let O = {x ∈ K : |x| ≤ 1} be its valuation ring.

Theorem 6.9 (Hensel's Lemma, Version 1). Let f(X) ∈ O[X] be monic and suppose

there exists x1 ∈ O such that

|f(x1)| < 1 (⇐⇒ f(x1) ∈M)
|f ′(x1)| = 1 (⇐⇒ f ′(x1) ∈ O× = O \M)

Then there exists a unique x ∈ O such that f(x) = 0 and |x− x1| ≤ |f(x1)|.

Proof. Choose any π ∈M \ {0}, not necessarily a uniformiser, such that π | f(x1) in O.
We proceed by induction on n. Given xn such that |xn − x1| < |f(x1)| and f(xn) ≡ 0
(mod πn), we want a unique xn+1 ≡ xn (mod πn) such that |xn+1 − x1| < |f(x1)| and
f(xn+1) ≡ 0 (mod πn+1). Then, as (xn)n is Cauchy, we take x = limn→∞ xn and by

continuity have f(x) = 0. Consider

OK [T ] 3 f(xn + πnT ) =
deg(f)∑
j=0

f (j)(xn)
j!

πnjT j

≡ f(xn) + f ′(xn)πnT (mod πn+1)

and recall f(xn) ≡ 0 (mod πn) and f ′(xn) is a unit, as |f ′(x1)| = 1 and x1 is close to

xn. In order to force this to be 0 mod πn+1 set T = −f(xn)/(f ′(xn)πn) ∈ O, and this

is a unique choice modulo T . In other words, if we let

xn+1 = xn −
f(xn)
f ′(xn)

then f(xn+1) ≡ 0 (mod πn+1).
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This is essentially the Newton�Raphson method.

Theorem 6.10 (Hensel's Lemma, Version 2). Let f1, . . . , fr ∈ O[x1, . . . , xd], r ≤ d.
Suppose x1 ∈ Od is such that

fi(x1) ≡ 0 (mod M)

| ∂fi

∂xj
(x1) mod M | = r

where ∂fi/∂xj ∈ Mr×d(k), k = O/M , for every i, j. Then there exists x ∈ Od, not in

general unique, such that x ≡ x1 (mod M) and fi(x) = 0 for all i = 1, . . . , r.

Proof. Similar.

Theorem 6.11 (Hensel's Lemma, Version 3). Suppose f ∈ O[X] is monic and x1 ∈ O
is such that |f(x1)| < |f ′(x1)|2. Then there exists a unique x ∈ O such that f(x) = 0
and |x− x1| < |f(x1)|/|f ′(x1)|.

Proof. Similar.

Example (Square Roots of Unity). This gives an alternative proof that for u ∈ Z∗p, if
u mod p ∈ F∗p2 then u ∈ Z∗p2.

Suppose p 6= 2 and let u ∈ Z∗p. Suppose

u ≡ ū = y2 (mod p)

in F∗p. Look at f(x) = x2 − u and reduce modulo M = (p),

f̄(x) = x2 − ū = (x− y)(x + y)

This has roots y,−y in Fp. Lift y to any element Y ∈ Zp such that Y mod p = y. Then

f(Y ) = Y 2 − u ≡ 0 (mod p)
f ′(Y ) = 2Y 6≡ 0 (mod p)

so as u is a unit, Y is a unit and 2Y is a unit. By Hensel's Lemma, there exists X ∈ Zp

such that X2 = u so f(x) = x2 − u = (x−X)(x + X) factorises over Zp.

This does not work for p = 2 as 2 is not a unit in Z2, but Hensel's Lemma (Version 3)

still applies.

Exercise 7. A solution modulo 8 lifts to a solution in Z2.

In general, let K be a complete non-Archimedean �eld with O, M and k = O/M .

Suppose f(X) ∈ O[X] is monic and f̄ = f mod M is separable, i.e., f̄ has no repeated

roots in k̄, or equivalently, gcd(f̄ , f̄ ′) = 1 in k[X]. Then, as O is integrally closed,

{roots of f(X) in K} = {roots of f(X) in O}
↔ {roots of f̄ in k}

where the two maps are reduction modulo M and Hensel lifting.
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Example ((p − 1)th Roots of Unity in Z∗p). Let f(X) = Xp − X so f̄(X) = X(X −
1) · · · (X − (p− 1)). By Hensel's Lemma, Xp −X has p distinct roots [0], [1], . . . , [p− 1]
and

[·] : F∗p → Z∗p
is a group homomorphism, called Teichmüller lift.

Example. Consider p = 5, Q5, Z5, k = F5. Then

[0] = 0 [1] = 1 [−1] = 2

[2] = 2 + 1 · 5 + 2 · 52 + 1 · 53 + 3 · 54 + · · ·
[3] = 3 + 3 · 5 + 2 · 52 + 3 · 53 + 1 · 54 + · · ·

In general, let K be a complete non-Archimedean �eld with O, M and suppose k = O/M
is �nite (or injects into F̄p). Then there exists a unique group homomorphism

[·] : k∗ → K∗

such that [x] mod M = x, called the Teichmüller lift. To see this, apply Hensel's Lemma

to X |k| −X.
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Local Fields

Suppose K is a local, non-Archimedean �eld with O, M , |·| and discrete valuation v,
uniformiser π, and O/M = k ∼= Fpn .

By considering Teichmüller lifts, {[a] : a ∈ k} is a set of representatives for O/M , so

K =
{ ∞∑

n=n0

[an]πn : an ∈ k

}
where [an] are called Teichmüller digits.

Now suppose char(K) = q > 0. Then since char(K) = char(k), we have q = p. Then

Fp ↪→ K and, by Hensel's Lemma, K contains the roots of Xpn −X. Thus K contains

Fp(roots of Xpn −X) = Fpn , that is,

[·] : Fpn ↪→ K

in this case is a �eld inclusion.

Calling t = π,

K =
{ ∞∑

m=m0

amtm : am ∈ Fpn

}
= Fpn((t))

O =
{ ∞∑

m=1

amtm : am ∈ Fpn

}
= Fpn [[t]]

So we have a unique local �eld of positive characteristic, with given residue �eld Fpn ,

namely Fpn((t)).

Theorem 7.1. Suppose K is a local �eld. Then one of the following three cases applies.

(i) K ∼= R or C (Archimedean);

(ii) K ∼= Fq((t)) for a unique q = pn (Equal Characteristic);

(iii) [K : Qp] <∞ for a unique p (Mixed Characteristic).

Proof. We have already seen the two cases K is Archimedean and K is non-Archimedean

with char(K) > 0.

So suppose K is local, non-Archimedean and char(K) = 0. Then Q ↪→ K, and so |·|
restricts to Q ⊂ K. Note |·|Q is non-Archimedean and non-trivial, for otherwise Z ↪→ O
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is an in�nite discrete set, hence closed, contradicting that O is compact. By Ostrowski's

Theorem, |·|Q is |·|p for some p, so

Q, |·|p ↪→ K, |·|

Taking completions, Qp ↪→ K, and it su�ces to show [K : Qp] < ∞. Let k = O/M ,

k ⊃ Fp, and call [k : Fp] = f . Say k has Fp-basis v̄1, . . . , v̄f and lift these to arbitrary

v1, . . . , vf ∈ O.
The valuation is discrete, and we may assume it is normalised so v(π) = 1.

K∗ v // // Z

Q∗
p 3 p

?�

OO

� // e > 0

for some integer e > 0, because p ∈MQp ⊂MK so v(p) > 0.

We claim that [K : Qp] ≤ ef (in fact, it is equal to ef), and viπ
j generate K over Qp.

Multiplying by a suitable power of p, it is enough to show that, for every x ∈ O,

x =
∑

1≤i≤f
1≤j≤e

Aijviπ
j

for some Aij ∈ Zp. Clearly,

x =
∑

1≤i≤f
1≤j≤e

aijviπ
j + p · O

for unique aij ∈ {0, 1, . . . , p− 1}, and

=
∑

1≤i≤f
1≤j≤e

aijviπ
j + p

∑
1≤i≤f
1≤j≤e

a′ijviπ
j + · · ·

which is a combination of viπ
j with Zp-coe�ents.

We know that if K is local, non-Archimedean and char(K) = 0 then

[K : Qp] <∞

Conversely, we will show that every �nite extension K of Qp has a unique structure as

a local �eld, i.e., |·|p extends to a unique absolute value on K, and K is complete with

respect to it.
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Inverse Limits

Instead of considering

Q, |·|p
b−→ Qp

valutation ring−−−−−−−−−→ Zp

we consider, given Z and (p) the quotients Z/piZ for i ∈ N and the projections Z/piZ �
Z/pjZ for j ≤ i.

We call I a directed set if I is a set equipped with a partial order ≤. Let (Ai)i∈I be a

sequence of groups (resp. rings). Let πij : Ai → Aj be group homomorphism (resp. ring

homomorphisms) for j ≤ i such that πii = ι and πjk ◦ πij = πik for k ≤ j ≤ i.

De�nition. The inverse limit is de�ned as

A = lim←−
i∈I

(Ai, πij) = lim←−
i∈I

Ai = {(ai)i∈I : πij(ai) = aj ∀j ≤ i}

This is a group (resp. ring).

Example. N can be made a directed set via (N,≤) or (N, |).

Example. Let I = (N,≤), (Ai)i∈N = (Z/piZ)i∈N for some prime p, and let

πij : Z/piZ→ Z/pjZ

for j ≤ i. Then
Zp = lim←−

i∈N
Z/piZ

Similarly,

k[[t]] = lim←−
i∈N

k[t]/(ti)

where πij is truncation modulo tj .

Example. Let I = (N, |), Ai = Z/iZ, and

πij : Z/iZ mod j−−−−−→ Z/jZ

for j | i. Then
lim←−
i∈N

Z/iZ = Ẑ

is a ring. It is left as an exercise to also show

Ẑ =
∏

p prime

Zp
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Remark. (i) A = lim←−i∈I
(Ai, πij). This has the universal property that we have

projections A
pi−→ Ai such that piπij = pj . For any B with such maps B

qi−→ Ai,

qiπij = qj there exists a unique φ : B → A

A
pi

  A
AA

AA
AA

B

φ

OO

qi

// Ai

(ii) If the Ai have a topology, the inverse limit topology on A = lim←−i∈I
Ai is the weakest

topology that makes all A
pi−→ Ai continuous.

Example. On Zp the inverse limit topology coincides with the p-adic topology. The

LHS is generated by preimages of points under Zp → Z/piZ, and the RHS is generated

by open balls a + piZp.

Let K, |·| be non-Archimedean with O, M , and corresponding valuation v. Choose

π ∈M \ {0} and normalise such that v(π) = 1.

Proposition 8.1. K is complete with respect to |·| if and only if

O → lim←−
i∈N
O/πiO, x 7→ (x mod πi)i∈N (∗)

is an isomorphism.

Note 4. lim←−i∈NO/πiO is the completion of the ring O with respect to the ideal (π).

Note 5. If (∗) is an isomorphism, we say O is (π)-adically complete (cf. surjective) and

separated (cf. injective).

Proof. Write K =
⋃

x x + O as a disjoint union of open and closed sets, where x runs

over coset representatives of O in K. Note that K is complete with respect to |·| if and
only if each x+O is complete with respect to |·| if and only if O is complete with respect

to |·|. Equivalently,

∀(xn)n in O with |xn − xn+1| → 0 ∃x ∈ O |xn − x| → 0 (A)

and such an x is necessarily unique.

Now (∗) is an isomorphism if and only if

∀(xi)i in O with v(xi+1 − xi) ≥ i ∃!x ∈ O v(x− xi) ≥ i (B)

But every sequence in (A) has a subsequence as in (B), so they are equivalent.

8.1 Pro�nite Groups

Let I be a directed set and πij : Gi → Gj group homomorphisms. Suppose (Gi)i∈I be a

directed system of �nite groups, all with the discrete topology. Then

G = lim←−
i∈I

Gi

is a pro�nite group with the inverse limit topology, called the pro�nite topology.
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Note 6. If the Gi are compact (e.g. �nite) then G ⊂
∏

i∈I Gi is compact and so G is

compact in the pro�nite topology.

Example. (Zp,+), (Z∗p,×), (Fpn [[t]],+), (Ẑ,+).

8.2 Main Example

Let L/K be an extension of �elds, possibly in�nite, but the union of �nite Galois ex-

tensions k/K. For example, Q̄/Q, F̄p/Fp, recalling F̄p =
⋃

n≥1 Fpn . Then

G = Gal(L/K) = Aut(L/K) = lim←−
k

Gal(k/K)

is a pro�nite group.

By the Fundamental Theorem of Galois Theory, extensions of K in L are in one-to-

one correspondence with closed subgroups of G, and �nite extensions of K in L are in

one-to-one correspondence with open subgroups of G.

Exercise 8. Show the following

Gal(F̄q/Fq) ∼= (Ẑ, +)
Frobq : x 7→ xq ↔ 1

Gal(Q
(⋃

n≥1

µpn

)
/Q) ∼= Z∗p

Gal(Q
(⋃

n≥1

µn

)
/Q) ∼= Ẑ∗

Note Gal(Q̄/Q) is presently still unknown.
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Extensions of Complete Fields

Example.

Z[i] P?
_oo

��

1 + i 3 2 + i 2− i

ww
ww

ww
ww

ww
7

Z
?�

OO

P ∩ Z 2 3 5 7

|·|5 on Q has two extensions to Q(i), |·|2+i and |·|2−i. This cannot happen for complete

�elds. �Primes do not split�.

Theorem 9.1. Suppose K, |·| is complete non-Archimedean and L/K is �nite with

[L : K] = d. Then

(i) There is a unique absolute value |·|L on L extending |·| on K, and L is complete

with respect to this.

(ii) |x|L = |NL/K(x)|1/d.

(iii) OL is the integral closure of OK in L.

Proof. Uniqueness. We do more. Given K, |·| and a vector space V over K, a norm

on V is a map ‖·‖ : V → R such that

• ‖v‖ = 0 if and only if v = 0;
• ‖αv‖ = |α|‖v‖;
• ‖v + w‖ ≤ max{‖v‖, ‖w‖}.

For example, V = Kd, ‖v‖sup = maxi|vi| for v = (v1, . . . , vd). We say two norms are

equivalent, denoted ‖·‖1 ∼ ‖·‖2, if there exists c, C ∈ R>0 such that

c‖·‖1 ≤ ‖·‖2 ≤ C‖·‖1

A norm de�nes a metric on V , and equivalent norms induce the same topology.

Proposition 9.2. Let K, |·| be complete non-Archimedean and V be a �nite-dimensional

K-vector space. Then any two norms on V are equivalent, and V is complete with respect

to any of them.

Proof. By induction on d = dim V . If d = 1 then V = K · e, ‖αe‖ = |α|‖e‖, so any two

norms on V are multiples of each other.
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Suppose d > 1, let V = Kd with norm ‖·‖. We show that ‖·‖ ∼ ‖·‖sup. This also proves
that V is complete. Let e1, . . . , ed be a basis of V , let C = maxi‖ei‖. Then

v =
d∑

i=1

viei =⇒ ‖v‖ ≤ max
i
‖viei‖ ≤ C‖v‖sup

It su�ces to prove c‖v‖sup ≤ ‖v‖ for some 0 < c. Suppose not and take a sequence v(n)

in V \ {0} such that

‖v(n)‖
‖v(n)‖sup

→ 0

as n→∞. Then, for some i ∈ {1, . . . , d},

‖v(n)‖sup = |v(n)
i |

for in�nitely many n ∈ N. Without loss of generality assume i = d, replace v(n) by this

subsequence and rescale

v(n) 7→ 1

v
(n)
d

v(n)

so that

(i) v
(n)
d = 1 for all n ∈ N;

(ii) v(n) is in Od
K ⊂ Kd, i.e., ‖v(n)‖sup = 1;

(iii) ‖v(n)‖ → 0 as n→∞.

Let u(n) = v(n) − ed ∈ Od−1
k ⊂ Od

K . Then

‖u(n+1) − u(n)‖ = ‖v(n+1) − v(n)‖ ≤ max{‖v(n+1)‖, ‖v(n)‖} → 0

as n→∞. By induction, (Kd−1, ‖·‖) is complete, so

u(n) → u ∈ Kd−1

and

‖ed + u‖ = lim
n→∞

‖ed + u(n)‖ = lim‖v(n)‖ = 0

so ed + u = 0 but u ∈ Kd−1, ed 6∈ Kd−1, contradiction.

Now suppose |·|1, |·|2 are absolute values on L extending |·| on K. They are norms on

L, hence equivalent, i.e.,
c|x|1 ≤ |x|2 ≤ C|x|1

But |xn|1 = |x|n1 and |xn|2 = |x|n2 , so

c1/n|x|1 ≤ |x|2 ≤ C1/n|x|1

As c1/n, C1/n → 1 as n→∞,

|x|1 = |x|2

Existence. Let |x|L = |NL/K(x)|1/d. We want to prove this is an absolute value on L.
Clearly

(i) |x|L extends |·| on K;
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(ii) |x|L = 0 if and only if x = 0;
(iii) |xy|L = |x|L|y|L.

It su�ces to prove |x+ y|L ≤ max{|x|L, |y|L}. Without loss of generality |y|L ≤ |x|L, so
z = y/x has |z|L ≤ 1, and

|x + y|L ≤ |x|L ⇐⇒ |1 + z|L ≤ 1

so we claim

NL/K(z) ∈ OK =⇒ NL/K(1 + z) ∈ OK

Let f be the minimal polynomial of z over K. Then

NL/K(z) = ±f(0)m

where m = [L : K]/ deg(f). Then, as f is monic irreducible in K[X] and f(0)m ∈ OK

hence f(0) ∈ O (as OK is integrally closed), we deduce f(z) ∈ OK [z] (see Question 23).

Therefore,

NL/K(1 + z) ∈ OK

Finally, OL is the integral closure of OK in L, because we know that NL/K(z) ∈ OK if

and only if z is integral over K.

9.1 Consequences

Suppose K, |·| is complete non-Archimedean. Then |·| extends uniquely to K̄,

α ∈ K̄ =⇒ |α| = |NK(α)/K(α)|1/[K(α):K]

Note that, in general, K̄ is not complete, e.g., Q̄p is not. Its completion is Cp = ˆ̄Qp,

which is complete and algebraically closed.

If α, α′ ∈ K̄ are Galois conjugates over K then |α| = |α′|. To see this, note that α, α′

are Galois conjugates if and only if α, α′ are roots of the same irreducible polynomials

f ∈ K[X], and then α, α′ have the same norm.

Lemma 9.3 (Krasner's Lemma). Let f(X) ∈ K[X] be irreducible and monic, say

f(x) =
d∏

i=1

(X − αi)

over K̄. Suppose β ∈ K̄ is such that |β − α1| < |β − αi| for all i > 1. Then α1 ∈ K(β).

Proof. α1 6= α2, . . . , αd, so α1 is a simple root of f , so f is separable. Let L = K(β),
and note L′ = L(α1, . . . , αd) is a Galois extension of L. For σ ∈ Gal(L′/L),

|β − σ(α1)| = |σ(β − α1)| = |β − α1| 6= |β − αi|

for all i > 1. Thus σ(α1) 6= α2, . . . , αd, so σ(α1) = α1. Hence the minimal polynomial

of α1 over L has degree 1, so α1 ∈ K(β).
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As a consequence of this, Qp has only �nitely many extensions of a given degree.

Now suppose L/K is �nite. We have

K, |·| ↪→ L, |·|
OK ↪→ OL

MK ↪→ML

kK ↪→ kL

Proposition 9.4. Suppose [L : K] = d, L/K is separable and the valuations are

discrete. Then

OL
∼= Od

K

as OK-modules.

Remark. All conditions are necessary, and the result does not hold for general number

�elds.

Proof. We want to show that OL injects into a free OK-module of �nite rank. Then,

as OK is a PID, OL is free of �nite rank, and since Frac(OK) = K, Frac(OL) = L we

conclude OL has rank [L : K] = d.

Let B(x, y) = TrL/K(xy), L × L → K. It is a non-degenerate K-bilinear form, where

the non-degeneracy of this form is equivalent to the separability of L/K.

Pick e1, . . . , ed ∈ OL a basis for L/K, and let eX
1 , . . . , eX

d ∈ L be the dual basis with

respect to B, i.e., B(ei, e
X
j ) = δij . Then

OL ⊂ {x ∈ L : B(x, y) ∈ OK ∀y ∈ OL} =: OX
L

as TrL/K(OL) ⊂ OK , because OL/OK is integral. Further,

OX
L ⊂

d⊕
i=1

Ok · eX
i

a �nitely generated free OK-module.
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Rami�cation and Inertia

Consider the following setting. Suppose we have K, |·|, vk, OK , MK , kK and L, |·|, vL,

OL, ML, kL, where [L : K] = d, all with their usual meaning.

Suppose vK is discrete and normalised. Assume kK is perfect, i.e., every �nite exten-

sion of kK is separable. This is the case, e.g., for Fq, F̄p, �elds of characteristic 0, or
algebraically closed �elds. It is not true for Fp(t).

De�nition. The residue degree, or inertial degree, is f = fL/K = [kL : kK ].

Let the valuations on K∗ and L∗ be given by logα|·| : K∗ � Z and logα|NL/K(·)|1/d : L∗ →
R with image in (1/d)Z, respectively. Then the image is a discrete subgroup, so vL is

discrete.

De�nition. The index [vL(L∗) : vL(K∗)] is called the rami�cation index of L/K, de-

noted e = eL/K . Equivalently, (πK) = (πe
L) in OL.

Remark. There are two possible conventions.

(i) Normalise vL, |·|L, but then vL|K∗ 6= vK but vL|K∗ = evK .

(ii) Let vL : L∗ → (1/e)Z, then vL is not normalised but vL|K∗ = vK .

Both are used.

Proposition 10.1.
eL/KfL/K = [L : K]

Proof. We know OL
∼= Od

K as OK-modules where d = [L : K]. Thus

OL/πKOL
∼= Od

K/πKOd
K
∼= (OK/πKO)d ∼= kd

K

as OK-modules. But

OL ⊃ πLOL ⊃ π2
LOL ⊃ · · · ⊃ πe

LOL = πKOL

and

πi
LOL/πi+1

L OL
∼= OL/πLOL, x 7→ x mod πi

L

as OK-modules, so these are also isomorphic to kL
∼= kf

K as OK-modules. Comparing

dimensions, d = ef .

De�nition. L/K is unrami�ed if eL/K = 1, or equivalently, [L : K] = fL/K . L/K is

totally rami�ed if eL/K = [L : K], or equivalently, fL/K = 1, that is, kL
∼= kK .
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Note 7. Given extensions M/L/K,

fM/K = fM/LfL/K

by the tower law for kM/kL/kK , and

eM/K = eM/LeL/K

by the tower law for M/L/K.

Example. Suppose [L : Qp] = 2 for some p 6= 2. Then

L = Qp(
√

d)

for some d ∈ {p, ηp, η} with η̄ = η mod p ∈ F∗p a non-residue.

• L = Qp(
√

p), Qp(
√

ηp) have eL/Qp
≥ 2 as p =

√
ηp2u for some unit u, so v(

√
ηp) =

1/2 in L. So e = 2, f = 1, and this is a totally rami�ed extension.

• L = Qp(
√

η) has fL/Qp
≥ 2. L contains the roots of X2 − η, so

kL ⊃ Fp(roots of X2 − η̄) = Fp2

as X2 − η̄ is irreducible over Fp. So e = 1, f = 2 and this is an unrami�ed

extension.

Exercise 9. For L/Q2, the extension L = Q2(µ3) = Q2(
√
−3) = Q2(

√
5) is unrami�ed,

but the other six quadratic extensions are rami�ed.
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Unrami�ed Extensions

Note that these are in one-to-one correspondence with extensions of the residue �elds.

Theorem 11.1. (i) Suppose L/K is a �nite, unrami�ed extension. Then OL =
OK [α] (and so L = K(α)) for any α ∈ OL with kL = kK(ᾱ).

(ii) Suppose `/kK is �nite. There exists an unrami�ed extension L/K with kL
∼= `

over kK .

(iii) Suppose L/K is a �nite, unrami�ed extension and let L′/K be any �nite extension.

Then

HomK(L,L′)→ HomkK
(kL, kL′)

is a bijection.

Proof. (i) We know OL
∼= Od

K as OK-modules, where d = [L : K]. As the extension
L/K is unrami�ed, πL = πK . Now kL = kK(ᾱ) implies 1, ᾱ, . . . , ᾱd−1 gener-

ate OL/πLOL. Therefore, by Nakayama's lemma, as OL is local, 1, α, . . . , αd−1

generate OL as an OK-module.

(ii) Write ` = kK(ᾱ). We can do this since kK is perfect and so `/kK is separable,

hence there exists a primitive element.

Lift the minimal polynomial ḡ(X) ∈ kK [X] of ᾱ to any monic polynomial g(X) ∈
OK [X], so g(X) is irreducible. Now let L = K(roots of g) = K[X]/(g(X)).

(iii) Write L = K(α) as in (ii); so kL = kK(ᾱ). Let g(X) be the minimal polynomial

of α over K and let ḡ(X) be its reduction over kK .

Given φ̃ : kL → kL′ , we �nd a root φ̃(ᾱ) of ḡ(X) in kL′ . By Hensel's Lemma, there

exists a unique root of g(X) in L lifting to it, and hence there exists a unique

φ : L→ L′ lifting φ̃.

Remark. Part (iii) implies the �eld L in (ii) is unique up to isomorphism.

Corollary 11.2. Suppose L/K is a �nite, unrami�ed extension. Then L/K is Galois

if and only if kL/kK is Galois, and if this is the case then Gal(L/K) ∼= Gal(kL/kK).

Proof. K-automorphisms σ : L → L and kK-automorphisms σ̄ : kL → kL are in one-to-

one correspondence under the maps reduction modulo MK and its inverse by part (iii)

of Theorem 11.1. So

Aut(L/K) ∼= Aut(kL/kK)

In particular, L/K is Galois if and only if |Aut(L/K)| = [L : K] if and only if |Aut(kL :
kK)| = [kL : kK ] = [L : K] if and only if kL/kK is Galois.
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Example. Suppose K = Qp. (The situation is similar for any local �eld K.) Qp has a

unique rami�ed extension of degree n ≥ 1,

Ln = Qp(µpn−1)

Ln/Qp is Galois with Gal(Ln/Qp) ∼= Z/nZ.
This is because Fp has a unique extension of degree n,

Fpn = Fp(roots of Xpn −X) = Fp(µpn−1)

and Fpn/Fp is Galois with Galois group Z/nZ.

Corollary 11.3. Suppose L/K is �nite. There exists a unique maximal unrami�ed

extension K ′ of K in L, so

L

K ′

totally rami�ed

OO

K

unrami�ed

OO

and every unrami�ed extension of K in L is contained in K ′.

Proof.

L kL

K

OO

kK

OO

By part (iii) of Theorem 11.1, there exists an unrami�ed extension K ′ of K with kK′ ∼= kL

over kK . By part (ii) of Theorem 11.1, K ′ ↪→ L over K.

L/K ′ is totally rami�ed, i.e., fL/K′ = 1, and part (iii) of Theorem 11.1 gives the last

claim.

Note 8. If L/K is Galois then K ′/K is Galois.

Example. Suppose p 6= 2 is a prime and let K = Qp. Then

L = Qp(
√

p,
√

η)

Qp(
√

η)
2

ggPPPPPPPPPPPP

77

2
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Qp

e=f=2

OO

Qp(
√

η) is the maximal unrami�ed extension of Qp in L.
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Totally Rami�ed Extensions

Proposition 12.1. Suppose L/K is totally rami�ed of degree e, π = πL is a uniformiser

and vL is a normalised valuation, i.e., vL(π) = 1. Then

(i) π satis�es an Eisenstein polynomial of degree e over OK .

(ii) OL = OK [π].

Conversely, if g ∈ OK [X] is Eisenstein then L = K[X]/g(X) is totally rami�ed over K
and vL(root of g) = 1.

Recall that g(X) is Eisenstein if and only if

g(X) = Xn + an−1X
n−1 + · · ·+ a0

with v(ai) ≥ 1, v(a0) = 1. Then g(X) is irreducible by Eisenstein's criterion.

Proof. (i) Consider the minimal polynomial of π over K,

πn + an−1π
n−1 + · · ·+ a0 = 0

irreducible over K and n ≤ e = [L : K]. π is integral over OK , so ai ∈ OK for

all i = 0, . . . , n− 1. Now consider the valuation of the LHS. The sum is 0 so two

terms have the same smallest valuation.

vL(aiπ
i) = i + evK(ai) ≡ i (mod e)

So these are all distinct for i < e. Hence n = e, vL(a0) = vL(πn) = n = e, in other

words, vK(a0) = 1, and vK(ai) > 0 because vK(a0) and vK(an) are smallest. Thus

g(X) is Eisenstein, irreducible, and L = K(π).
(ii) For x ∈ L write x =

∑e−1
i=0 biπ

i with bi ∈ K. Then

vL(x) = min
i
{i + evK(bi)}

as the elements i + evK(bi) all have distinct valuations. Now x ∈ OL if and only

if vL(x) ≥ 0 if and only if vK(bi) ≥ 0 for all i = 0, . . . , e− 1. So OL = OK [π].

Conversely, if g(X) ∈ OK [X] is Eisenstein, let

L = K[X]/g(X) ∼= K(root of g) = K(α)

for some α ∈ L. Then
α ∈ L =⇒ α ∈ OL
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as OL is integrally closed, and as g mod M = Xn,

α ∈ML

so vL(α) > 0. Consider

αn + an−1α
n−1 + · · ·+ a1α︸ ︷︷ ︸
vL(·)>eL/K

+ a0︸︷︷︸
vL(·)=eL/K

= 0

so vL(αn) = eL/K , so n = [L : K] | eL/K , but eL/K | n. Thus n = eL/K , L/K is totally

rami�ed, and vL(α) = 1.
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Inertia Group and Higher Rami�cation

Suppose L/K is Galois, G = Gal(L/K). Let K ′ be the maximal unrami�ed extension

of K in L and recall K ′/K is also Galois.

L

GK ′

totally rami�ed

K

unrami�ed

We also have Gal(K ′/K) = Gal(kL/kK).

De�nition. The inertia group I = IL/K is Gal(L/K ′). Equivalently,

I = {σ ∈ G : σ maps to ι in Gal(kL/kK)}
= {σ ∈ G : σx ≡ x (mod M) ∀x ∈ OL}

Note 9. I / GL/K , e = |I|.

Example. Let K = Q2, let L = Q2(
3
√

2, ζ 3
√

2, ζ2 3
√

2) be the splitting �eld of X3 − 2,
where {1, ζ, ζ2} = µ3.

We have [L : K] ≤ 3! = 6. µ3 ⊂ L so kL ⊃ F2(µ3) = F4, so fL/K ≥ 2 and 2 | fL/K .
3
√

2 ∈ L so eL/K ≥ 3 and 3 | eL/K . But now [L : K] = fL/KeL/K , so these are in fact

equalities.

L

G=S3

I=C3

Q2(µ3)

3

Gal F4/F2
∼=C2

Q2

2

Note 10. 3
√

2 is a uniformiser of L. 0, 1, ζ, ζ2 are representatives for OL/ML.

OL = {a0 + a1
3
√

2 + a2
3
√

2
2
+ a3 · 2 + · · · : ai ∈ {0, 1, ζ, ζ2}}

is a free Z2-modulo of rank 6 with basis 1, ζ, 3
√

2, ζ 3
√

2, 3
√

2
2
, ζ 3
√

2
2
, and Gal(L/K) per-

mutes the elements � this is not true in general.
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G = S3 is the set of permutations of { 3
√

2, ζ 3
√

2, ζ2 3
√

2}, i.e., the maps

3
√

2 7→ { 3
√

2, ζ
3
√

2, ζ2 3
√

2}
ζ 7→ {ζ, ζ2}

I = C3 is the set of even permutation, i.e., the maps

3
√

2 7→ { 3
√

2, ζ
3
√

2, ζ2 3
√

2}
ζ 7→ ζ

Note 11. Gal(L/K)→ Gal(kL/kK) = Gal(F4/F2) = {ι, (ζ ↔ ζ2)}. On

OL = {a0 + a1
3
√

2 + a2
3
√

2
2
+ a3 · 2 + · · · : ai ∈ {0, 1, ζ, ζ2}}

elements of G \ I ∼= S3 \C3 act non-trivially on a0, and non-identity elements of C3 act

non-trivially on OL/M2
L.

More generally, we let

Gi = {σ ∈ G : σx ≡ x mod M i+1
L ∀x ∈ OL}

be the ith rami�cation group. Then

G ⊃ G0 ⊃ G1 ⊃ · · ·

and G0 = IL/K . In the example above,

S3 = G ⊃ G0 = C3 ⊃ G1 = {ι} ⊃ G2 = {ι} ⊃ · · ·

Note that

Gi = ker
(
G ↪→ AutOL → AutOL/(πL)i+1

)
so that Gi is normal in G for all i ≥ 0.

Theorem 13.1. Let L/K be Galois, π = πL be a uniformiser, v = vL be normalised

and G = Gal(L/K).

(i) For σ ∈ I, σ ∈ Gn if and only if v(π − σπ) > n.
(ii)

⋂
n≥0 Gn = {ι}.

(iii) If we write, for σ ∈ Gn,

σπ = ασπ n = 0

σπ = π + ασπn+1 n ≥ 1

then σ 7→ ᾱσ = ασ mod M de�nes an embedding

G0/G1 ↪→ k∗L n = 0
Gn/Gn+1 ↪→ (kL,+) n ≥ 1

(iv) If char(kK) = p then G is the unique p-Sylow subgroup of I = G0. If char(kK) = 0
then G1 = {ι}.
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Proof. Replacing K by K ′, the maximal unrami�ed extension in L, we may assume that

L/K is totally rami�ed and I = G.

(i) The `if' direction is clear by de�nition. For the `only if' direction, recall that

OL = OK [π].
(ii) If σ 6= ι then σπ 6= π because L = K(π), hence σ 6∈ Gn for su�ciently large n.
(iii) Let n = 0 and take σ, τ ∈ G0 = I = G. Writing

σπ = ασπ, τπ = ατπ

we see that

(στ)π = στπ = σατπ = (σατ )ασπ ≡ ασατπ (mod π2)

as σατ ≡ ατ (mod π) for σ ∈ I. So σ 7→ ᾱσ is a group homomorphism G0 → k∗L.
Clearly, ker(σ 7→ ᾱσ) = G1 by part (i).

Now let n ≥ 1. Similarly,

(στ)π = σ(π + ατπ
n+1)

= σ(π(1 + ατπ
n))

= (π + ασπn+1)(1 + σ(ατπ
n)︸ ︷︷ ︸

≡ατ πn mod πn+1

)

≡ (π + ασπn+1)(1 + ατπ
n) (mod πn+2)

≡ π + (ασ + ατ )πn+1 (mod πn+2)

so here Gn → (kL,+) via σ 7→ ᾱσ and by part (i) the kernel is Gn+1.

(iv) If char(kL) = 0 then (kL,+) has no �nite subgroup, so for all n > 0, Gn/Gn+1 =
{ι}, and hence G1 = {ι}.
If char(kL) = p then

Gn/Gn+1 ↪→ (kL,+)

is a Fp-vector space. Thus G1 is a p-group.
G1 / G0 = G, G1 is a p-group. By part (iii),

G0/G1 ↪→ k∗L

But kL is a �eld of characteristic p so has no elements of order p, so G0/G1 has

order coprime to p. It follows that G1 / G0 is its p-Sylow subgroup, and G1 / G0

is normal hence unique.

De�nition. G1 is the wild interia group. G0/G1 is the tame inertia group. L/K is

tamely rami�ed if G1 = {ι} and wildly rami�ed otherwise.
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We have the following picture for char(kK) = p.

{ι} L

...
...

G2 K ′′′

G1 K ′′

I = G0 K ′

G K

where

• K/K ′ is maximal unrami�ed, Gal(K ′/K) = G/G0 = Gal(kL/kK) and this is cyclic
if K is local.

• Further, K ′/K ′′ is totally tamely rami�ed, Gal(K ′′/K ′) ↪→ k∗L, which is the tame

inertia group, cyclic of order coprime to p.
• Finally, L/K ′′ is totally widly rami�ed, Gal(L/K ′′) is the wild inertia group; it is

a p-group and quite complicated in general.

Corollary 13.2. Gn/Gn+1 is abelian for all n ≥ 0.

Corollary 13.3. I is soluble. If L/K is local then Gal(L/K) is soluble.

Corollary 13.4. If char(kK) = 0, e.g., K = Q((t)) or C((t)), then every extension of

K is tamely rami�ed.

13.1 Structure of Tamely Rami�ed Extensions

Lemma 13.5. Let L/K be Galois, totally and tamely rami�ed of degree n. Then

(i) µn ⊂ K since Cn
∼= Gal(L/K) ↪→ k∗K ;

(ii) there exists a uniformiser π of K such that L = K( n
√

π), which follows from

Kummer's theorem.

Proof. Exercise.

Example (S3-Extensions of Q((t))). Let K = Q((t)). We describe all Galois extensions

L of K with Gal(L/K) ∼= S3. Let πK = t, a uniformiser of K, and kK = Q. Recall that

this is perfect as it has characteristic 0. Let kL = F , some number �eld.

Case 1. Suppose L/K is unrami�ed. Then L = F ((t)) for some S3-extensions F/Q.
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Case 2. Suppose L/K is rami�ed. I / S3, I 6= {ι} and I is cyclic (cf. tame inertia).

Thus I = C3 and

G/I ∼= C2
∼= Gal(F/Q)

and

L

K ′ = F ((t))

3 totally rami�ed

K = Q((t))

2 unrami�ed

with [F : Q] = 2.

L/K ′ is Galois, totally and tamely rami�ed so, by the previous lemma, µ3 ⊂ F∗ and

hence F = Q(µ3) = Q(
√
−3) as this is the only quadratic extension of Q containing the

cube roots of unity.

By the lemma,

L = K ′( 3
√

f)

for some f ∈ Q(µ3)[[t]] of the form f = ct + O(t2) = ct(1 + · · · ). 1 + O(t) is a cube in

K ′. To see this, either apply Hensel's Lemma or write (1 + · · · )1/3 :=
∑∞

n=0

(
1/3
n

)
(· · · )n.

So in fact

L = Q(µ3)((t))(
3
√

ct)

for some c ∈ Q(µ3).

Exercise 10. By considering 3
√

c̃t ∈ L, c = α + β
√
−3, c̃ = α − β

√
−3 prove that in

fact L = K ′( 3
√

ct) with c ∈ Q.

This gives as the �nal answer that the S3-extensions of K = Q((t)) are

(i) F ((t)) with F/Q an S3-extension;

(ii) Q(µ3)((t))( 3
√

ct), c ∈ Q, i.e., splitting �elds for X3 − ct over K.
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