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Chapter 1

Basic De�nitions and Properties

De�nition. A graph is a pair G = (V,E) where E ⊂ V (2) = {{x, y} ⊂ V : x 6= y}.

Example. V = {a, b, c, d}, E = {{a, b}, {a, c}, {a, d}, {b, c}}. Informally, this graph can
be represented as follows.
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De�nition. The set V is the set of vertices of G, also denoted V (G). The set E is the
set of edges of G, also denoted E(G). All graphs considered here are �nite. |V | is called
the order of G, often written |G|. |E| is called the size of G, often written e(G).

Our graphs have no multiple edges, but some authors allow these and call our graphs
simple.
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De�nition. Two graphs G,H are isomorphic if there is a bijection ψ : V (G) → V (H)
such that ab ∈ E(G) if and only if ψ(a)ψ(b) ∈ E(H).

Example. (i) En, the graph with n vertices and no edges, called the empty graph of
order n, e.g. E3.

(ii) Kn, the complete graph of order n with E(Kn) = V (2), e.g. K4.
(iii) Pn, the path of order n, e.g. P5.
(iv) Cn, the cycle of order n, e.g. C5.
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2 Basic De�nitions and Properties

Note that paths and cycles do not allow repetitions of vertices.

De�nition. H is a subgraph of G if H is a graph with V (H) ⊂ V (G) and E(H) ⊂ E(G).

Every graph of order at most n is a subgraph of Kn. (Formally, every such graph is
isomorphic to a subgraph of Kn, but we will not distinguish between distinct isomorphic
graphs.)

De�nition. H is an induced subgraph of G if V (H) ⊂ V (G) and E(H) = V (2)(H) ∩
E(G). If W ⊂ V (G) we write G[W ] for the induced subgraph with vertex set W . Note
that the only induced subgraphs of Kn are Kk for k ≤ n.

De�nition. A graph G is connected if for every pair of vertices u, v ∈ V (G) there is a
path in G from u to v (called a u− v path). A component of G is a maximal connected
subgraph, and it is necessarily induced. G is a disjoint union of its components.

De�nition. A forest is an acyclic graph. A tree is a connected acyclic graph. The
components of a forest are trees.
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Theorem 1.1. The following are equivalent.

(i) G is a tree.
(ii) G is minimal connected, i.e. the removal of any edge destroys connectivity.
(iii) G is maximal acyclic, i.e. the addition of any new edge creates a cycle.

Proof. [(i) =⇒ (ii)] G is connected. Suppose uv ∈ E(G) and G− uv is still connected.
Then there is a u − v path P in G − uv which with uv forms a cycle in G. So if G is
acyclic and connected, it is minimal connected.

[(ii) =⇒ (i)] Suppose G is connected and has a cycle C, say. Let uv be an edge of the
cycle. Let x, y ∈ G be vertices such that some x − y path P in G contains uv. Then
P −uv together with C−uv still contains an x− y path, so G−uv is connected. Hence
if G is minimal connected then G is acyclic (and connected).

[(i) =⇒ (iii)] G is a tree. If uv 6∈ E(G) there is a u− v path in G which with uv forms
a cycle in G+ uv.

[(iii) =⇒ (i)] G is maximal acyclic. If uv 6∈ E(G) then G+ uv has a cycle containing
uv, so G has a u− v path. Hence G is connected, and acyclic by assumption.

Corollary 1.2. A graph G is connected if and only if it has a spanning tree, that is, a
subgraph T such that V (T ) = V (G) and T is a tree.

Proof. Since T is connected and spanning, G is connected. Conversely, if G is connected,
let T be a minimal connected spanning subgraph. By Theorem 1.1, T is a tree.
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De�nition. The set of neighbours of a vertex v is denoted Γ(v) = {w ∈ V (G) : vw ∈
E(G)}. A vertex w ∈ Γ(v) is adjacent to v, an edge vw with w ∈ Γ(v) is incident to v.
The degree of v is d(v) = |Γ(v)|. The degrees of G written in some order form a degree

sequence.

Lemma 1.3 (Handshaking Lemma).∑
v∈V

d(v) = 2e(G)

De�nition. A leaf is a vertex of degree one.

De�nition. The minimum degree of G is δ(G), the maximum degree is ∆(G).

Theorem 1.4. A tree of order at least 2 has at least 2 leaves. Note that this is the best
possible bound by considering a path.

Proof. Let T be a tree and let x1 be a vertex, which we choose to be a leaf if there is one.
Let x1x2 . . . xk be a path of maximal length. Since T is connected, we have δ(T ) ≥ 1
(since |G| ≥ 2), so k 6= 1. Then xk is a leaf, else there exists xku ∈ E(G) where u 6= xk−1

and by maximality of the length of the path, u = xi for some i ≤ k − 2, contradicting
that T is acyclic.

So we can assume x1 is a leaf to obtain a second leaf xk.

Corollary 1.5. A tree of order n has size n− 1.

Proof. We prove this by induction on n. (The cases n ≤ 2 are trivial.) Let T be a tree
of order n ≥ 3. By Theorem 1.4, T has a leaf v. The graph T − v has order n − 1, is
acyclic, and connected. (If v lies on an x− y path in T , then v = x or v = y.) So T − v
is a tree of order n− 1, so has size n− 2 by induction.

Corollary 1.6. The following are equivalent.

(i) G is a tree of order n.
(ii) G is connected, of order n and size n− 1.
(iii) G is acyclic, of order n and size n− 1.

Proof. [(i) =⇒ (ii), (i) =⇒ (iii)] This follows from the de�nition and Corollary 1.5.

[(ii) =⇒ (i)] G contains a spanning tree T . By Corollary 1.5, e(T ) = n− 1, so T = G.

[(iii) =⇒ (i)] Add edges to get a maximum acyclic graph G′. By Theorem 1.1, G′ is a
tree. Now e(G′) = n− 1, so G′ = G.

How many graphs of order n are there? Take the vertex set [n] = {1, . . . , n}. The next
�gure illustrates the case n = 3.
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The number of labelled graphs, where we can distinguish vertices by name, is 2(n
2).

To count unlabelled graphs, we need to count the number of orbits in the set of la-
belled graphs under the action of some permutation group. We can use Burnside's
lemma. This states that, for an action of a group G, (no. of G-orbits) × |G| =∑

g∈G (no. of �xed points of g).

order 3 4 5

no. of (unlabelled) graphs 4 11 34

How many trees of order n are there?

order 2 3 4 5

no. of (labelled) trees 1 3 16 125

Theorem 1.7 (Caley). There are nn−2 labelled trees of order n.

Proof (Prüfer). We construct a bijection between the set of labelled trees and the set of
strings of length n− 2 with alphabet [n].

[Trees→ Strings] Choose the smallest labelled leaf. Write down its neighbour. Remove
the leaf. Repeat until one edge is left. Consider the following tree as an example.
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Deleting 1,2,4,6,7,9,8,10,5, we obtain the string 3,8,11,8,5,8,3,5,3.

[Strings→ Trees] Note that a vertex v appears d(v)− 1 times. Amusingly,∑
v

(d(v)− 1) =
∑

v

d(v)− n = 2(n− 1)− n = n− 2.

Take the least �available � vertex not in the sequence. Mark it �unavailable� and join it
to the �rst number in the sequence. Delete the �rst number and repeat. When �nished,
join the two last available vertices. Continuiung the previous example, we start with
the string 3,8,11,8,5,8,3,5,3 and mark the vertices 1,2,4,6,7,9,8,10,5 as �unavailable�, and
�nally join 3 and 11. Observe that this process produces an acyclic graph of size n− 1,
so by Corollary 1.6, the result is a tree.

Remark. More formally, let f : Trees → Strings, g : Strings → Trees. Given T , let
f(T ) = a = (a1, . . . , an−2); if b ∈ {1, . . . , n} is minimal not in a, then g(a) has an
edge ba1, and b is the smallest labelled leaf of g(a). Since f(T − b) = (a2, . . . , an), by
induction g(a2, . . . , an) = T − b, so g(a) = T , gf = ι, hence f is injective. By removing
the smallest leaf, we similarly obtain fg = ι so f is surjective, hence f is bijective.
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De�nition. A graph is r-partite if its vertex set can be partitioned into r classes so no
edge lies within a class. Bipartitite means 2-partite. Remarkably, we can characterise
bipartite graphs.

Theorem 1.8. A graph is bipartite if and only if it has no odd cycles.

Proof. If a graph G is bipartite the result is clear since cycles alternate between the two
classes.

Conversely, we may assume G is connected by considering components. The result is
trivial for the empty graph, so suppose G is not the empty graph. Pick a vertex v0, and
let Vi = {w ∈ G : d(v0, w) = i} where d(u, v) is the distance from u to v, i.e. the length
of the shortest u− v path.

•
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In general, edges lie within classes Vi and between Vi and Vi+1 but nowehere else, by
de�nition of Vi.

Suppose there is an edge inside some Vi, uv say. Trace back paths of length i from
each of u and v to v0. The �rst time they meet together with the edge uv we obtain
an odd cycle. Since G has no odd cycle, each Vi contains no edges. So X =

⋃
i even Vi,

Y =
⋃

i odd Vi gives a bipartition.

Remark. This gives an algorithm for 2-colouring graphs with no odd cycle.

De�nition. An eulerian tour of a graph is a walk along edges covering each edge exactly
once and returning to the start. A graph is eulerian if it has no isolated vertices (i.e.
vertices with degree 0) and has an eulerian tour.

Theorem 1.9. G is eulerian if and only if |G| > 1, G is connected and all degrees are
even.

Proof. If G is eulerian, the result is clear. We prove the converse by induction on the
size of G. The conditions imply δ(G) ≥ 2, so Theorem 1.4 shows that there is a cycle C
(since the order of G is at least 2 and G is connected, if G is acyclic there exists a leaf,
contradicting δ(G) ≥ 2). G − E(C) has all components isolated vertices or connected
even degree components, each having an eulerian tour by induction. Go around C,
taking in �sub-eulerian tours� when �rst encountered.

Remark. Analogeously, when starting and �nishing at distinct vertices, require the
existence of exactly two vertices of odd degree.

De�nition. A graph is planar if it can be drawn in the plane without edges crossing.
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There are no essential di�culties of analysis here. In particular, we take the Jordan
Curve Theorem for granted in this course. Indeed, it can be shown that any such
drawing can be done with straight line edges. (See Example Sheet 1.)
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De�nition. A plane graph is a planar graph drawn in the plane. A face is a simply-
connected region, including the ∞-face.

Example. K4 has four faces.
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Lemma 1.10. Let G be a graph with d(v) even for all v ∈ V (G). Then E(G) can be
partioned into cycles.

Proof. We may ignore isolated vertices and assume d(v) ≥ 2. If G contains a cycle we
can remove it and note that the all degrees remain even. If there is no cycle then G
contains a tree and hence a leaf, i.e. a vertex of degree 1, contradiction.

Lemma 1.11. Let e be an edge of a plane graph G. Then e is in a boundary of two
faces if and only if there exist a cycle C in G containing e.

Proof. The drawing of C is a simple polygonal closed curve, separating the plane.

Let F be one of the faces with e in its boundary. Let H be the spanning subgraph of G
consisting of all edges h with F on one side, not F on the other. Going around a vertex
v in a small loop, we observe that we enter and leave F the same number of times, so
dH(v) is even. By Lemma 1.10, all edges of H are in cycles.

Theorem 1.12 (Euler). If G is a connected plane graph of order n and size m with f
faces then n−m+ f = 2.

Proof. Prove this by induction on m. Connectivity implies m ≥ n − 1 as trees are
minimal connected and have size n − 1. If m = n − 1 then G is a tree, so f = 1. If
m ≥ n, pick an edge e in some cycle. G− e has n vertices, m− 1 edges and f − 1 faces
since e lies between two faces.

De�nition. A bridge in a graph is an edge whose removal increases the number of
components.

Equivalently, the edge does not lie in a cycle. Observe that if e is not a bridge and lies
in a plane graph then it borders two distinct faces. Thus if G is a bridgeless plane graph
with fi faces of length i, then

∑
i ifi = 2m. Note here that the∞-face has a well-de�ned

length for a bridgeless graph.
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De�nition. The girth g(G) of a graph G is the length of the shortest cycle, or ∞ is G
is acyclic.

Theorem 1.13. Let G be a connected bridgeless planar graph of order n and girth g.
Then e(G) ≤ g

g−2(n−2). In particular, a planar graph of order n satis�es e(G) ≤ 3n−6.

Proof. Draw G in the plane. Then 2m =
∑

i ifi ≥ g
∑

i fi = gf . By Theorem 1.12,
n−m+ 2m

g ≥ 2, i.e. m(g − 2) ≤ g(n− 2). In particular, if G is a bridgeless connected
planar graph then e ≤ 3n − 6, this holds for any planar graph G with n ≥ 3, either by
induction or by adding edges till G is bridgeless connected.

Remark. Adding edges leads to problems since we may decrease g. Instead, note that
we have solved the bridgeless case. If G contains a bridge ab, G − ab has two vertex-
disjoint subgraphs satisfying the formula by induction. Then

e(G) = e(G1) + e(G2) + 1

≤ g

g − 2
[(n1 − 2) + (n2 − 2)] + 1

=
g

g − 2
(n− 2) + 1− 2

g

g − 2

≤ g

g − 2
(n− 2).

Example. Note e(K5) = 10 > 3(5− 2), so K5 is non-planar.

De�nition. The complete bipartite graph Kp,q is bipartite with p vertices in one class,
q vertices in the other, and all pq possible edges between them.

Example. e(K3,3) = 9 > 4
2(6− 2) as g(K3,3) = 4, so K3,3 is non-planar.

���
??? ���

??? ���
???

G W E

qqqqqqqqqqqqqqqqqqqq

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

qqqqqqqqqqqqqqqqqqqq

♠

Observe that having too many edges is not the only reason graphs fail to be planar. For
example, no subdivision of K5 is planar, as can be seen on replacing edges by disjoing
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paths, but these may satisfy the conclusion of Theorem 1.13 with su�ciently long paths.
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Remarkably, plane graphs can be characterised.

Theorem 1.14 (Kuratowski, 1930). A graph is planar if and only if it contains no
subdivision of K5 or of K3,3.

Proof. Proof omitted.

De�nition. Given a plane graph G, we can construct the dual graph G∗. Place a dual
vertex inside each face, and, for each edge, draw a dual edge joining the corresponding
dual vertices.

Example. In this example, the original graph has 7 vertices, 11 edges, 6 faces and the
dual has 6 vertices, 11 edges, 7 faces.
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Note that usually the dual of the dual is the original graph.

Remark. If a graph is not 3-connected (see Chapter 2), the dual might not be simple.
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But if G is a 3-connected simple graph then so is G∗.



Chapter 2

Matchings and Connectivity

De�nition. Let G be a bipartite graph with vertex classes X,Y . A matching from X
to Y is a set of |X| independent, i.e. pairwise non-incident, edges. If |X| = |Y |, this is
also a matching from Y to X, also called a 1-factor, i.e. a 1-regular spanning subgraph,
where n-regular means every vertex has degree n.
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Consider X a set of men, Y a set of women, and xy ∈ E(G) if x can marry y. Finding
a matching from X to Y is to �nd wives for all men. We need |Y | ≥ |X| and that every
man knows a woman. In general, every set of k men needs to know at least k women.
For A ⊂ X de�ne Γ(A) =

⋃
x∈A Γ(x). Clearly we need |Γ(A)| ≥ |A| for all A ⊂ X. The

following �gure illustrates cases in which this fails.

•

•

•

•

•

•

•

22
22

22
22

22
22

22

DDDDDDDDD

•

•

•

•

•

•

•

•

22
22

22
22

22
22

22

DDDDDDDDD

�������������������

��������������

•

•

•

•

•

•

•

•�������������������

22
22

22
22

22
22

22

zzzzzzzzz DDDDDDDDD

Theorem 2.1 (Hall). Let G be a bipartite graph with vertex classes X,Y . Then G has
a matching from X to Y if and only if

∀A ⊂ X |Γ(A)| ≥ |A| (HC)

Proof 1. The necessity is clear. We prove su�ciency by induction on |X|. If for every
∅ 6= A ( X we have |Γ(A)| > |A|, then pick any edge xy ∈ E(G) and in G′ = G − xy
Hall's condition holds. The matching in G′, by induction, together with xy gives a
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matching in G. Otherwise, there exists a critical set ∅ 6= B ( X such that |Γ(B)| = |B|.
Let G1 = G[B ∪ Γ(B)], G2 = G[(X −B) ∪ (Y − Γ(B))].

G1

G2

B

X−B

Γ(B)

Y−Γ(B)

•
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• •
•
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For A ⊂ B, we have Γ1(A) = Γ(A), where Γ1(A) are the neighbours of A in G1, hence
by (HC) in G

|Γ1(A)| = |Γ(A)| ≥ |A|,

so (HC) holds in G1. For A ⊂ X −B, we have

|Γ2(A)| = |Γ(A ∪B)| − |Γ(B)|
= |Γ(A ∪B)| − |B| ≥ |A ∪B| − |B| = |A|

using (HC) in G to establish the inequality. So (HC) holds in G2. Thus G1, G2 both
have matchings, hence so does G.

Proof 2. Consider a minimal (with respect to removing edges) subgraph in which (HC)
still holds. If in the resulting graph d(x) = 1 for all x ∈ X then what is left is a matching.
If not, there exists a ∈ X joined to b1, b2 ∈ Y and sets A1, A2 ⊂ X − {a} such that
|Γ(Ai)| = |Ai|, bi 6= Γ(Ai) and Γ(Ai ∪ {a}) = Γ(Ai) ∪ {bi}, for i = 1, 2.

•a

• b1

•
b2

A1 Γ(A1)

VVVVVVVVVVVVVVV

hhhhhhhhhhhhhhh

Hence Γ(A1 ∪A2 ∪ {a}) = Γ(A1 ∪A2). Thus

|Γ(A1 ∪A2 ∪ {a})| = |Γ(A1 ∪A2)|
= |Γ(A1) ∪ Γ(A2)|
= |Γ(A1)|+ |Γ(A2)| − |Γ(A1) ∩ Γ(A2)|
≤ |Γ(A1)|+ |Γ(A2)| − |Γ(A1 ∩A2)|
= |A1|+ |A2| − |Γ(A1 ∩A2)|
≤ |A1|+ |A2| − |A1 ∩A2|
= |A1 ∪A2|
= |A1 ∪A2 ∪ {a}| − 1,

violating (HC), a contradiction. Here we have used (HC) on A1 ∩ A2 to establish the
second inequality.
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Corollary 2.2 (Defect form). Let G be as above and d ∈ N. There exists |X| − d
independent edges in G if and only if |Γ(A)| ≥ |A| − d for all A ⊂ X.

Proof. Introduce d new members of Y joined to all members of X. In the new graph
(HC) holds, so there is a matching. Now remove the d new vertices.

Corollary 2.3 (Polygamous version). We can give every man 2 wives if and only if
|Γ(A)| ≥ 2|A| for all A ⊂ X.

Proof. Replace each man by 2 clones of himself, i.e. with the same neighbours. In the
new society (HC) holds, so marry o� all men. Now remove the clones and give their
wives to the original men.

Tutte's theorem gives a necessary and su�cient condition for a 1-factor in a general, not
necessarily bipartite, graph.

De�nition. Given a collection Y1, . . . , Yn of subsets of a set Y , a set of distinct repre-
sentatives is a set {y1, . . . , yn} with yi ∈ Yi and yi 6= yj for i 6= j.

Corollary 2.4. There is a set of distinct representatives if and only if

∀S ⊂ [n]
∣∣∣⋃
i∈S

Yi

∣∣∣ ≥ |S|.

Proof. Necessity is clear. To prove su�ciency, construct a bipartite graph with X =
{Y1, . . . , Yn} and edges from Yi ∈ X to y ∈ Y if y ∈ Yi. Now apply Theorem 2.1.

De�nition. A graph G is k-connected if |G| > k and G − S is connected for every set
S ⊂ V (G) with |S| < k.

De�nition. De�ne the vertex connectivity to be

κ(G) = max{k : G is k-connected}.

If G is not complete, κ(G) = min{|S| : ∃S ⊂ V (G) G− S is disconnected}.

De�nition. Given a, b ∈ V (G), ab 6∈ E(G), the local connectivity is

κ(a, b;G) = min{|S| : ∃S ⊂ V (G)− {a, b} with no a− b path in G− S}.

Clearly, κ(G) = minab6∈E κ(a, b;G) if G is not complete. There are edge connectivity
analogues where a set F ⊂ E(G) is removed.

λ(G) = min{|F | : ∃F ⊂ E(G) G− F is disconnected}
λ(a, b;G) = min{|F | : ∃F ⊂ E(G) with no a− b path in G− F}

λ(G) = min
a,b

λ(a, b;G)

Note that in the case of edge connectivity, no special care is required for complete graphs.
The following holds.

κ(G) ≤ λ(G) ≤ δ(G)

For the �rst inequality, remove one endvertex for each edge in our set of λ(G) edges
whose removal disconnects G. For the second inequality, remove δ(G) edges from a
vertex of least degree. (See Example Sheet 1.)
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De�nition. A set of a− b paths is vertex disjoint if the only vertices in more than one
path are a, b.

Clearly, the size of any such set is at most κ(a, b;G), since to separate a from b, we need
to remove at least one vertex from each path. Remarkably, there is a set of κ(a, b;G)
paths.

Theorem 2.5 (Menger). Let a, b ∈ V (G) with ab 6∈ E(G). Then there exists a set of
κ(a, b;G) vertex-disjoint a− b paths.

De�nition. We use the notion of graph contraction. If e ∈ E(G), the graph G/e
derived from G by contracting e is obtained by removing both endvertices u, v of e and
introducting a new vertex x joined to Γ(u) ∪ Γ(v).

G

• • • •

•
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•
ve
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G/e
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•
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?

A contraction of G is obtained by a sequence of these operations.

Proof. Suppose not, and let G, a, b be a minimal counterexample, i.e. G has minimal
order. Let k = κ(a, b;G) and de�ne a minimal cutset to be any set S ⊂ V − {a, b} with
|S| = k such that G− S has no a− b path.

Claim (i): Every edge e not meeting a or b lies inside a minimal cutset. For otherwise,
κ(a, b;G/e) ≥ k and a set of k vertex-disjoint a− b paths in G/e would yield a set in G,
contradiction.

Claim (ii): If S is a minimal cutset, then S = Γ(a) or S = Γ(b). For otherwise, let Ga

be the graph obtained by contracting the component of G − S containing a to a single
vertex a∗.

•
a

S

• b

G

gggggggggg

WWWWWWWWWW

WWWWWWWWWW

gggggggggg •a∗
S

• b

Ga

jjjjjjjjjjj

TTTTTTTTTTT

WWWWWWWWWW

gggggggggg

Since S 6= Γ(a), |Ga| < |G|. Clearly κ(a∗, b;Ga) ≥ k. Thus there exists a set of
k a∗ − b paths in Ga. Likewise de�ne Gb and �nd a set of k a− b∗ paths in Gb. These
paths would yield k vertex-disjoint a− b paths in G.

If Γ(a) 6= Γ(b) then |Γ(a)∩Γ(b)| < k, then there exists an edge (in the cutset) lying nei-
ther inside Γ(a) nor in Γ(b), contradicting the claims. But if Γ(a) = Γ(b) we immediately
have k a− b paths.

Corollary 2.6. Let κ(G) ≥ k, let X,Y be disjoint subsets of V (G) with |X|, |Y | ≥ k.
Then there exists a set of k completely vertex disjoint X − Y paths.
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Proof. Add new vertices x joined to all vertices in X, y joined to all vertices in Y , to
form G∗. Then κ(x, y;G∗) ≥ k, so the desired paths exist by Menger's theorem.

Theorem 2.7 (Edge form of Menger's theorem). If a, b ∈ V (G) then there exists a set
of λ(a, b;G) edge-disjoint a− b paths. Note that, trivially, no larger such set exists.

Proof. Either we mimic the proof of the vertex form, or we construct the line graph

L(G) of G, whose vertex set is the set of edges of G, where ef ∈ E(L(G)) if e, f are
incident edges of G.

G

•

•

•

•
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?????????

L(G)

• •

• •

•���������
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��
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??

?

Now formH from L(G) by joining a new vertex a∗ to all vertices of L(G) that correspond
to edges of G meeting a, and introduce b∗ likewise.

Note an a − b path in G gives an a∗ − b∗ path in H, and an a∗ − b∗ path in H gives a
set of edges containing an a − b path in G. We have κ(a∗, b∗;H) = λ(a, b;G), so there
is a set of λ(a, b;G) vertex-disjoint a∗ − b∗ paths in H by Theorem 2.5, so there is a set
of λ(a, b;G) edge-disjoint a− b paths in G.

Remark (Menger's theorem implies Hall's theorem). Introduce new vertices x joined
to all vertices in X and y joined to all vertices in Y to obtain G′ from G. Then
κ(x, y,G′) = |X| if and only if (HC) holds in G. ((HC) fails if and only if there xists
A ⊂ X such that |A| > |Γ(A)| if and only if we can remove (X − A) ∪ Γ(A) of size less
than X.)





Chapter 3

Extremal Graph Theory

De�nition. A Hamiltonian cycle in a graph is a spanning cycle, i.e. it meets every
vertex exactly once.

Q: How many edges are needed to guarantee a Hamiltonian cycle?
A: We need more than

(
n
2

)
− (n− 2) edges. (See Example Sheet 2.)

• • Kn−1

Q: How large must δ(G) be to guarantee a Hamiltonian cycle?
A: We need δ(G) ≥ n

2 .

Kn • Kn′

Theorem 3.1. Let G be a graph of order n ≥ 3 such that every pair of non-adjacent
vertices x, y satis�es d(x) + d(y) ≥ k. If k < n and G is connected then G has a path of
length k. If k = n then G has a Hamiltonian cycle.

Proof. Observe that if k = n then G must be connected, since any two non-adjacent
vertices have a common neighbour. Suppose that G has no Hamiltonian cycle, for
otherwise we are done. Let P = v1v2 . . . vl be a path of maximum length. Notice that
G has no l-cycle, because if l = n this would be a Hamiltonian cycle and if l < n
by connectivity there would be a path of length l + 1. In particular, v1vl 6∈ E(G), so
d(v1) + d(vl) ≥ k. Note that all neighbours of v1, vl lie in P , by maximality of P .

•
v1

•
v2

• • • • • • •
vj

• • •
vl

Let S = {i : v1vi ∈ E(G)}, |S| = d(v1), T = {i : vlvi−1 ∈ E(G)}, |T | = d(vl). Now
S ∪ T ⊂ {2, . . . , l} and S ∩ T = ∅, for if j ∈ S ∩ T then v1v2 . . . vj−1vlvl−1 . . . vj would
be an l-cycle. Hence

l − 1 ≥ |S ∪ T | = |S|+ |T | = d(v1) + d(vl) ≥ k.
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If k = n, this is impossible, so we have a Hamiltonian cycle. If k < n, then P has length
at least k.

Corollary 3.2 (Dirac). If G has order n and δ(G) ≥ n
2 then G has a Hamiltonian cycle.

Remark. Note if 2 | n and k
2 | n− 1 then Theorem 3.1 is best possible.

•

Kk/2 Kk/2 Kk/2 Kk/2
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In this example, the longest path has length l = k + 1.

Theorem 3.3. LetG be a graph of order n with no path of length k. Then e(G) ≤ k−1
2 n.

Moreover, equality holds only if k | n and G is a disjoint of copies of Kk.

Proof. By induction on n. The result is easily true for n ≤ k. In general, if G is
disconnected, we are home at once by the hypothesis applied to each component. If G
is connected, δ(G) ≤ k−1

2 by Theorem 3.1. Let x have degree at most k−1
2 . Since G is

connected, Kk is not a subgraph of G, so

e(G− x) <
k − 1

2
(n− 1)

by the inductive hypothesis. Then

e(G) ≤ e(G− x) +
k − 1

2
<
k − 1

2
n.

De�nition. Given a �xed graph F , de�ne

ex(n, F ) = max{e(G) : |G| = n, F 6⊂ G}.

Q: How many edges are there in a Kr+1-free graph?

Observe that r-partite graphs contain no Kr+1. To obtain an r-partitite graph of max-
imum size and of order n, it should be complete r-partite. Moreover, if we have two
classes X,Y with |X| ≥ |Y | + 2, changing to class sizes |X| − 1 and |Y | + 1 gains us
−|Y | + (|X| − 1) > 0 edges. Hence, there is a unique r-partite graph of order n and
maximum size. The classes have size

⌊
n
r

⌋
or

⌈
n
r

⌉
and it is complete r-partite. It is called

the r-partite Turán graph of order n. It is denoted by Tr(n) and its size is tr(n).

The value of tr(n) can be written explicity in terms of the remainder after n divided by
r but this is awkward to work with. When working with tr(n), it is more convenient to
use some observations about it derived from the structure of Tr(n).

Consider the case r = 5, remainder 3. Remove the vertex at the top for (∗), remove the
vertices at the bottom for (∗∗).

• • •

•

• •
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First, observe that vertices of least degree in Tr(n) lie in the largest classes, and if we
remove one such vertex, we get Tr(n− 1); hence

tr(n)− δ(Tr(n)) = tr(n− 1) (∗)

Moreover, removing one vertex from each class (i.e. a Kr) and noting we have now a
Tr(n− r) in which each vertex has r − 1 neighbours in Kr,

tr(n) =
(
r

2

)
+ (n− r)(r − 1) + tr(n− r) (∗∗)

Finally, note ∆(Tr(n)) ≤ δ(Tr(n)) + 1, so if we have a graph with |G| = n and δ(G) >
δ(Tr(n)) then e(G) > tr(n). More explicitly, by comparing the degree sequence of G
with that of the Turán graph, we have the following.

If |G| = n and δ(G) > δ(Tr(n)) then

e(G) ≥ tr(n) + 1
2M (†)

where M is the number of vertices of minimum degree in Tr(n).

Q: Can we do better than Tr(n) and still be Kr+1-free?

Theorem 3.4 (Turán, 1941). Let G be Kr+1-free of order n with e(G) ≥ tr(n). Then
G = Tr(n).

Proof 1. By induction on n. The case n ≤ r is trivial as then Tr(n) = Kn. In general,
given G, remove edges to obtain G′ with e(G′) = tr(n). By (†), δ(G′) ≤ δ(Tr(n)). Let x
be a vertex of minimum degree in G′. Then G′ − x has order n− 1, is Kr+1-free and

e(G′ − x) = e(G′)− δ(G′)
= tr(n)− δ(G′)
≥ tr(n)− δ(Tr(n))
= tr(n− 1)

using (∗). By the induction hypothesis, G′ − x = Tr(n − 1). Since there must be some
class of G′ in which x has no neighbour (otherwise Kr+1 ⊂ G′), G′ is r-partite. But
e(G′) = tr(n), so G′ = Tr(n). Since Tr(n) is maximal Kr+1-free, G = G′ = Tr(n).

Proof 2. By induction on n. Obtain G′ from G by adding edges until the graph is
maximal Kr+1-free. Certainly G′ contains some Kr, K say. Each vertex of G′ has at
most r − 1 neighbours in Kr, so

e(G′) ≤
(
r

2

)
+ (n− r)(r − 1) + e(G′ −K).

By (∗∗), e(G′ −K) ≤ tr(n− r), so G′ −K = Tr(n− r) by induction and equality holds
throughout, so every vertex of G′ − K is joined to all vertices but one of K. Since
vertices in di�erent classes of G′−K, i.e. Tr(n−r), miss di�erent vertices of K, we have
G′ = Tr(n) and G = G′.
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It is natural to ask the bipartite analogue of the previous question. What is the maximum
size of an n×n bipartite graph, i.e. with n vertices in each class, that contains no complete
bipartite subgraph Kt,t? This is known as the problem of Zarankiewicz. Denote the
maximum size by z(n, t). The value of z(n, t) is unkown, even approximately. The
following simple idea is thought to be accurate.

Theorem 3.5.

z(n, t) ≤ (t− 1)1/t(n− t+ 1)n1−1/t + (t− 1)n

= O(n2−1/t)

if t is �xed and n→∞.

Remark. Even the proper rate of growth, as a power of n, is unknown.

Proof. Let G be a maximal n × n Kt,t-free graph of size z(n, t) with bipartition X,Y ,
|X| = |Y | = n. Let the vertices in X have degrees d1, . . . , dn; note by maximality of G
that di ≥ t− 1 for all i = 1, . . . , n. Let nd =

∑n
i=1 di = z(n, t). Let

S = {(x, T ) : x ∈ X,T ⊂ Y such that |T | = t ∧ T ⊂ Γ(x)}.

If x ∈ X has degree di, there are
(
di
t

)
pairs (x, T ) in S with this choice of x. If T ⊂ Y

with |T | = t there are at most t− 1 x's with (x, T ) in S. Thus

n∑
i=1

(
di

t

)
= |S| ≤ (t− 1)

(
n

t

)
(A)

Since the polynomial
(
w
t

)
in w is convex if w ≥ t− 1,

n

(
d

t

)
≤

n∑
i=1

(
di

t

)
≤ (t− 1)

(
n

t

)
(B)

Therefore, (
d− t+ 1
n− t+ 1

)t

≤ d(d− 1)(d− 2) · · · (d− t+ 1)
n(n− 1)(n− 2) · · · (n− t+ 1)

≤ t− 1
n

(∗)

The result follows.

Theorem 3.6. z(n, 2) ≤ 1
2n(1 +

√
4n− 3) and equality holds for in�nitely many n.

Proof. The above proof shows d(d−1) ≤ n−1 by (∗) for t = 2. Hence d ≤ 1
2(1+

√
4n− 3).

To obtain equality, we need all above inequalities to holds exactly. Thus, from (B), all
degrees in X are equal to d, which hence must be an integer, and, from (A) with t = 2,
every two vertices of Y have exactly one common neighbour in X, and vice versa by
arguing with X,Y transposed.

The existence of this graph is equivalent to the existence of a projective plane of order p,
where n = p2 +p+1. This is a set of n points, the vertices of Y , together with n subsets
of points called lines, the sets Γ(x). Each point is in the same number of lines (p + 1),
each line has the same number of points (p + 1), each pair of points is in exactly one
common line, and each two lines have exactly one common point. It is known that there
exists a projective plane for every prime power order.
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Example. For example, the following image shows the Fano plane, i.e. the projective
plane of order 2.

• •

•
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This gives rise to the Heawood graph.
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It is known that there are no such planes of order 6 (easy) or 10 (hard).

Theorem 3.7. ex(n,K2,2) ≤ n
4 (1 +

√
4n− 3).

Proof. Suppose |G| = n, G 6⊃ K2,2. As before we count vertices x ∈ V (G) and covering
sets S ⊂ V (G) with |S| = t, x 6∈ S. We obtain

n

(
d

t

)
≤

∑
v∈V

(
d(v)
t

)
≤ (t− 1)

(
n

t

)

where d is the average degree. The result follows by observing e(G) = 1
2dn.

Remark. Not surprisingly, there is no nice exact description of ex(n, F ) in general.
Usually, the case of n small relative to |F | is a mess, but sometimes things get nicer for
larger n. We have the following examples.

ex(n,Kr+1) = tr(n) ∼ (1− 1
r )

(
n

2

)
This is clear by noting that any x ∈ Tr(n) is joined to a share of approximately r−1

r
vertices. For the next examples, see Example Sheet 2.

ex(n,K3) =
⌊n2

4

⌋
ex(n,C5) = t2(n) for n ≥ 6

ex(n, F ) =
⌊n2

4

⌋
+ 2 for n ≥ 5

ex(n, P ) = t2(n) + n− 2 for large n

where P is the Petersen graph, and both P and F are shown below.
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For general graphs F , can we �nd ex(n, F ) approximately? Can we �nd
limn→∞ ex(n, F )/

(
n
2

)
?

De�nition. De�ne Kr(t) to be the complete r-partite graph with t vertices in each
class, i.e. Kr(t) = Tr(rt).

The following lemma is the heart of the matter.

Lemma 3.8. Let r, t ≥ 1 be integers and let ε > 0 be real. Then, if n is su�ciently
large (i.e. there exists n1(r, t, ε) such that if n > n1), every graph G with |G| = n and
δ(G) ≥ (1− 1

r + ε)n contains Kr+1(t).

Note that Kr+1(1) = Kr+1 and δ(Tr(n)) ≈ (1− 1
r )n.

Proof. We proceed by induction on r, proving the base case r = 1 and the general case
r > 1 simultaneously. (Also note that the case r = 1 can be derived from Theorem 3.5.)
Let T =

⌈
2t
εr

⌉
. We proceed in three simple steps.

(i) G contains Kr(T ); call it K. (This part uses induction.)
(ii) G−K contains a large set of vertices U , each joined to at least t in each class of

K.
(iii) Many vertices in U (certainly at least t) are joined to the same t in each class of

K. This gives Kr+1(t).

It will be evident that each step holds if n is su�ciently large. For exactness, we shall
use only (i) n1(1, t, ε) ≥ T and n1(r, t, ε) ≥ n1(r − 1, T, 1/r(r − 1)) for r ≥ 2, (ii)
n1(r, t, ε) ≥ 6rT

ε , and (iii) n1(r, t, ε) ≥ 3t
εr

(
T
t

)r
.

(i) This is trivial if r = 1, provided n ≥ T . If r > 1 and since

δ(G) ≥ (1− 1
r−1 + 1

r(r−1))n

we have that G ⊃ Kr(T ) if n is large, by the induction hypothesis.
(ii) Let U be the vertices in G −K having at least (1 − 1

r + ε
2)|K| neighbours in K.

Since each vertex of K has degree at least (1 − 1
r + ε)n, writing e(G −K,K) for

the number of edges between G−K and K, we have

|K|[(1− 1
r + ε)n− |K|] ≤ e(G−K,K)

≤ |U ||K|+ (n− |U |)(1− 1
r + ε

2)|K|,

so

εn
2 − |K| ≤ |U |(1

r −
ε
2).

Since |K| ≤ εn
6 if n is large, this gives |U |

r ≥ εn
3 , so |U | ≥

εrn
3 .
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(iii) Each vertex of U has at least

(1− 1
r + ε

2)|K| = (1− 1
r + ε

2)rT = (r − 1)T + εrT
2

≥ (r − 1)T + t

neighbours in K, and hence to at least t in each class of K. Thus, for each u ∈ U ,
we can pick a Kr(t) ⊂ K that is in the neighbourhood of u. Since there are only(
T
t

)r
possible choices for Kr(t), and since |U | ≥ εrn

3 ≥ t
(
T
T

)r
if n is large, there

exist t vertices in U for which the same choice was made, i.e. we have Kr+1(t).

Theorem 3.9 (Erd®s�Stone, 1946). Let r, t ≥ 1 be integers and ε > 0 be real. If n
is su�ciently large (i.e. there exists n0(r, t, ε) such that if n > n0) then every graph G
with |G| = n and e(G) ≥ (1− 1

r + ε)
(
n
2

)
contains Kr+1(t).

Proof. It is enough to show that G contains a large subgraph H with δ(H) ≥ (1− 1
r +

ε
2)|H|. To be precise, we �nd H with |H| > S =

⌊
ε1/2n

⌋
. Then if n0 > 2ε−1/2n1(r, t, ε

2),
we have |H| > n1(r, t, ε

2) and Lemma 3.8 shows Kr+1(t) ⊂ H. For technical reasons, we

also require
(
s+1
2

)
≥ 2n which is possible since the left-hand side is of order n2.

Suppose no such H exists. Then we can construct a sequence of graphs G = Gn ⊃
Gn−1 ⊃ Gn−2 ⊃ · · · ⊃ Gs where |Gj | = j, and the vertex in Gj but not in Gj−1 has
degree at most (1− 1

r + ε
2)j in Gj . Then

e(Gs) ≥ (1− 1
r + ε)

(
n

2

)
−

n∑
j=s+1

(1− 1
r + ε

2)j

= (1− 1
r + ε

2)
(
s+ 1

2

)
+ ε

2 − (1− 1
r + ε

2)n

>
εn2

4
>

(
s

2

)
for su�ciently large n. This is a contradiction since |Gs| = s, so e(Gs) ≤

(
s
2

)
.

De�nition. The chromatic number χ(F ) of a graph F is the smallest k such that F is
k-partite.

Corollary 3.10.

lim
n→∞

ex(n, F )(
n
2

) = 1− 1
χ(F )− 1

.

Proof. Let r + 1 = χ(F ). Then F 6⊂ Tr(n), so ex(n, F ) ≥ tr(n), whence

lim inf
n→∞

ex(n, F )(
n
2

) ≥ lim
n→∞

tr(n)(
n
2

) = 1− 1
r
.

Conversely, given ε > 0, if |G| > n0(r, |F |, ε) and e(G) ≥ (1 − 1
r + ε)

(|G|
2

)
then, by

Theorem 3.9, G ⊃ Kr+1(|F |) ⊃ F . Therefore,

lim sup
n→∞

ex(n, F )(
n
2

) ≤ (1− 1
r + ε),

for all ε > 0.





Chapter 4

Colouring

De�nition. A (vertex) colouring of a graph G with k colours is a map c : V (G) → [k]
such that c(u) 6= c(v) if uv ∈ E(G).

The chromatic number of G is the smallest k such that G can be coloured with k colours,
denoted χ(G). Unlike the case k = 2, there is no nice characterisation of k colourable
graphs for k ≥ 3. Likewise, there is no known good way of �nding χ(G).

The greedy algorithm runs through the vertices of a graph using some pre-arranged
order. It assigns the least colour to a vertex that is not used on its already coloured
neighbours.

c(vj) = min(N− {c(vi) : i < j ∧ vivj ∈ E(G)}).
It is important to realise that the number of colours used depends on the ordering.

Theorem 4.1. χ(G) ≤ 1 + maxH δ(H), the maximum taken over all subgraphs of G.

Proof. Let vn be a vertex of minimum degree in G, let vn−1 be a vertex of minimum
degree in Hn−1 := G[V (G)−{vn}], let vn−2 be a vertex of minimum degree in Hn−2 :=
G[V (G)− {vn, vn−1}], etc.
Let d = maxj δ(Hj), taking Hn = G. Then each vj has at most d neighbours vi with
i < j. Then the greedy algorithm uses at most 1 + d colours when run on this ordering
of the vertices.

It looks like d ≤ maxH δ(H), but in fact equality holds. For, given H ⊂ G, let j =
max{i : vi ∈ H}. Then H ⊂ Hj , so δ(H) ≤ δ(Hj) ≤ d since vj is of minimum degree in
Hj and vj ∈ H.

Corollary 4.2. χ(G) ≤ ∆(G) + 1.

Remark. Note that equality holds if G is complete. Also note that, in fact, the greedy
algorithm never uses more than 1 + ∆ colours.

Clearly, χ(G) is equal to the maximum of the chromatic numbers of its components.
Indeed, if κ(G) = 1 and x is a cutvertex, i.e. κ(G− x) = 0, then χ(G) is the maximum
of the chromatic numbers of the pieces meeting at x.

We make the following observation. If G is connected and vn ∈ V (G), then we can
order the remaining vertices s.t. each has at least one later neighbour, e.g. by decreasing
distance from vn. As a consequence, if G is connected and not regular, then χ(G) ≤
∆(G). Taking any vertex vn with d(vn) < ∆, we can apply the greedy algorithm with
the above ordering.
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De�nition. A block of a graph G is a maximal 2-connected subgraph.

Recall that a bridge is an edge in no cycle, and note all other edges lie in blocks. G is a
�tree� of blocks and bridges. In particular, two blocks pairwise intersect in at most one
vertex and there exists at least two endblocks.

Theorem 4.3 (Brooks' theorem). Let G be a connected graph with χ(G) = ∆(G) + 1.
Then G is complete or an odd cycle.

Proof. If ∆ = 2 then G is a path or a cycle, and the theorem is easily veri�ed, so we
may assume ∆ ≥ 3. We assume G is connected, not complete, and we colour with at
most ∆ colours.

Also, if κ(G) = 1 then no block is K∆+1 and since, by induction on the order of the
graph, each block needs at most ∆ colours, so does G. We shall �nd vertices v1, v2, vn

such that

(i) v1v2 6∈ E(G);
(ii) v1, v2 ∈ Γ(vn);
(iii) G− {v1, v2} is connected.

Given these vertices, pick vn−1 joined to vn (there will be at least one vj with 3 ≤ j ≤
n − 1 since ∆ ≥ 3 implies |G| ≥ 4), pick vn−2 joined to one of {vn−1, vn}, pick vn−3

joined to one of {vn−2, vn−1, vn} etc. We can do this because of (iii). We end up with
v1, v2, v3, . . . , vn, i.e. all vertices of G, where every vertex vj for 3 ≤ j ≤ n − 1 has a
neighbour vi with i > j.

Let us use the greedy algorithm. Then c(v1) = c(v2) = 1 by (i). Also c(vj) ≤ ∆ for
3 ≤ j ≤ n − 1 by the preceding observation. Also, since vn has two neighbours of the
same colour by (ii), we have c(vn) ≤ ∆.

To �nd v1, v2, vn if κ(G) ≥ 3, take vn of degree ∆(G) and since G 6= K∆+1, we can take
two non-adjacent neighbours v1, v2 of vn. (Suppose all neighbours of vn are adjacent,
thenK∆+1 ⊂ G, but G is connected and ∆ is maximal, hence G = K∆+1, contradiction.)

In the case κ(G) = 2, take vn s.t. κ(G−vn) = 1. Then every endblock of G−vn contains
a non-cutvertex joined to vn. Let v1, v2 be two such vertices in di�erent endblocks.

De�nition. The clique number of G is ω(G) = max{r : G ⊃ Kr}.

De�nition. The independence number α(G) of G is the maximum size of any indepen-
dent set, i.e. a set of vertices with no edges between them, so α(G) = ω(Ḡ).

We have the following trivial lower bound for χ(G).

max
{
ω(G),

|G|
α(G)

}
≤ χ(G).

De�nition. Given a graph G, let pG(x) be de�ned as the number of ways to colour G
with colours 1, 2, . . . , x.

Example. (i) If K̄n is the complement of Kn then pK̄n
(x) = xn, by choosing any of

x colours for each of the n vertices.
(ii) For a tree T , pT (x) = x(x− 1)n−1.
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(iii) For a complete graph, we have pKn(x) = x(x− 1)(x− 2) · · · (x− n+ 1) for x ≥ n
as we have x choices for the �rst vertex, x − 1 choices for the second vertex, etc.
If 1 ≤ x ≤ n− 1 then pKn(x) = 0.

Theorem 4.4. For all edges e ∈ E(G), pG(x) = pG−e(x)− pG/e(x).

Proof. The colourings of G are these colourings of G−e where the ends of e get di�erent
colours. But the colourings of G− e where ends of e have the same colour are precisely
colourings of G/e.

Observe, for example, that pG(x) =
∏

C pC(x) where C runs over the components of G.
But nearly all other information about pG(x) is derived given Theorem 4.4 and by induc-
tion on |E(G)|. In particular, pG(x) is a polynomial called the chromatic polynomial.
(Although this can be seen directly as well, see Example Sheet 3.)

Corollary 4.5. pG(x) = xn − an−1x
n−1 + · · ·+ (−1)na0, where n = |G|, an−1 = e(G),

aj ≥ 0 for all j, and min{j : aj 6= 0} = k where k is the number of components of G.

Proof. This is left as an exercise via Theorem 4.4 and induction.

Remark. Note that G is not speci�ed by pG(x) up to isomorphism.

De�nition. A k-edge-colouring of the graph G is a map c : E(G) → [k] where c(e) 6=
c(f) if the two edges e, f share an endvertex.

Remark. Note an edge-colouring of G is a vertex-colouring of the line graph L(G). But
edge-colourings enjoy special properties that merit attention.

De�nition. The minimum number of colours needed to edge-colour G is the chromatic

index denoted χ′(G).

Clearly χ′(G) ≥ ∆(G) and

χ′(G) ≤ 1 + ∆(L(G))
≤ 1 + (2∆(G)− 2)
= 2∆(G)− 1.
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By Brooks' theorem 4.3, χ′(G) ≤ 2∆(G)− 2 if G is connected and not an odd cycle or
an edge.

Theorem 4.6. Let G be a bipartite multigraph. Then χ′(G) = ∆(G).
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Proof. This can be proved by applying Hall's theorem (see Example Sheet 3). Here is
a direct proof. First, observe we may assume G is ∆-regular. If not, replace G by the
graph formed from G and a copy G′ of G, joining v ∈ G to v′ ∈ G′ by ∆− d(v) edges.

We prove the theorem for ∆-regular multigraphs by induction on |G| + ∆(G). Note it
is true if |G| = 2. It is also true if ∆ = 0, so we may assume ∆ ≥ 1. Pick an edge uv of
multiplicity m ≥ 1. Make G − {u, v} ∆-regular by adding ∆ −m edges between Γ(u)
and Γ(v), i.e. between Γ(u)− v and Γ(v)− u.

•
u

•
v

Γ(v)−u Γ(u)−v
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Colour this multigraph with ∆ colours. Some colour, red say, does not appear on a new
edge. Thus the red edges together with uv (one copy) form a 1-factor in G. Colour one
uv-edge red, then the red edges do not meet each other, but meet every vertex. Remove
them from G and get a (∆− 1)-regular graph. Colour this by induction.

Note Theorem 4.6 fails for non-bipartite graphs, e.g. K3, and even more so for multi-
graphs. For example, the following graph has ∆ = 6 but χ′ = 9.

• •

•
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Theorem 4.7 (Vizing, 1965). Let G be a graph. Then

∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

This is clearly the best bound possible. For K3, ∆ = 2, χ′ = 3. Note χ′(Kn) = n only
for n ≥ 3 odd. χ′(K2n) = 2n− 1 according to Bollobás.

Proof. It is enough to show that if G has a colouring with ∆+1 colours leaving one edge
uncoloured, then it has a colouring with every edge coloured. Let xy0 be the uncoloured
edge. Note that at every vertex at least one colour is unused.

•
x

•
y0 (greenX)

•
y1 (yellowX)

•
y2 (redX)

• y3
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green

yellow

red

Construct a sequence of edges xy0, xy1, . . . , xyk such that a colour ci available at yi is
the colour of xyi+1. Do this maximally with distinct ci. We must stop either (i) because
ck does not appear at x or (ii) because ck = cj for some 0 ≤ j < k.
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In case (i), recolour xyi with ci, 0 ≤ i ≤ k, and we are done.

In case (ii), recolour xyi, 0 ≤ i < j and uncolour xyj . Now let c be a colour not used
at x and let H be the subgraph consisting of edges coloured c and ck. We can swap c
and ck in any component of H and still have a proper colouring.

If x and yj lie in di�erent components of H, swap c and ck in the component containing
x. This frees ck at x and leaves yj una�ected, so colour xyj with ck = cj , so we are
done.

Thus we may assume x, yj are in the same component of H. But ∆(H) ≤ 2, so H
consists of paths and cycles. But dH(x), dH(yj), dH(yk) ≤ 1, so x, yj , yk lie at the ends
of paths. Thus yk is in a di�erent component of H from x and yj . Swap colours in the
component of H at yk. Recolour xyi with ci, j ≤ i < k, and colour xyk with c.

De�nition. A list colouring of a graph G is a colouring c : V (G) → N (as usual
c(v) 6= c(u) if uv ∈ E(G)) with c(v) ∈ L(v) where L(v) ⊂ N is a list of colours available
at v.

For the usual colouring we have L(v) = [k]. De�ne

χl(G) = min{k : ∃ list colouring whenever |L(v)| ≥ k ∀v ∈ G}.

Clearly χl(G) ≥ χ(G). In general, χl can be much bigger than χ, even for a bipartite
graph G (e.g. χl(K3,3) = 3).
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However, χl(G) ≤ 1 + maxH δ(H) holds by the previous proof.

We can de�ne χ′l(G) analogously for edge colourings. Amazingly, χ′l(G) = χ′(G) = ∆(G)
for bipartite graphs G (Galvin, 1994). It is conjectured χ′l(G) = χ′(G) for all graphs G.

Consider χ(G) for G planar. Since e(G) ≤ 3|G| − 6, it follows that δ(G) ≤ 5. Also, if
H ⊂ G then H is planar, δ(H) ≤ 5. Thus χ(G) ≤ 6 by Theorem 4.1. We can improve
this.

Theorem 4.8 (Heawood, 1890, �Five Colour Theorem�). Let G be a planar graph.
Then χ(G) ≤ 5.

Proof. Suppose otherwise and let G be a minimal counterexample, drawn in the plane.
Let v be a vertex with d(v) ≤ 5. Colour G − v with 5 colours. Then v must have a
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neighbour of each colour, or else we could colour v too; let ui be the neighbour of v with
colour i, 1 ≤ i ≤ 5.

•
u4

•
2

•4
•2

• 4

•u2

•
v

•
u3

•
u1

•
u5

OOOOOOO

������������

jjjjjjjjjj TTTTTTTTTT

��
��

��
��

�

jjjjjjjjjj
OOOOOOO

OOOOOOO

If u2, u4 are in di�erent components of the 2/4 coloured subgraph, i.e. subgraph induced
by vertices of colours 2/4, then swap 2 and 4 in the component at u2. This makes u2

colour 4 and leaves colours at ui, i 6= 2, unchanged. Then colour v with 2, contradiction.
So there exists a path coloured 2/4 from u2 to u4.

But likewise there is a 3/5 coloured path from u3 to u5, contradicting planarity.

Remarkably, we can get more for less.

Theorem 4.9 (Thomasson, 1993). χl(G) ≤ 5 for planar G.

Proof. We prove the following by induction on |G|.
Let G have an outer cycle v1v2 . . . vp and have triangular faces inside. Let |L(v1)| =
|L(vp)| = 1, L(v1) 6= L(vp). Let |L(vi)| ≥ 3 for 2 ≤ i ≤ p − 1 and |L(v)| ≥ 5
elsewhere. Then G can be coloured.

(†)

If there is a chord vivj , where vi, vj are not successive elements of the cycle, let G1, G2

be the subgraphs with boundaries v1v2 . . . vivj . . . vp and vivi+1 . . . vj , respectively. G1

can be coloured by (†). Colours at vi, vj are now forced, so colour G2 using (†).

•
vj

•vp

•
v1

•
v2 •

v3

•
vi
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G2

G1

If there is no chord, let v1x1x2 . . . xkv3 be the neighbours of v2.

•vp

•
v1

•
v2 •

v3

•
x1 •

x2

•

• xk
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Let G′ = G − v2. Pick i, j ∈ L(v2) − L(v1). Let L′(xm) = L(xm) − {i, j}. Colour G′

using L′ by (†). One of i or j is not used to colour v3, so colour v2 with it.

Remark. There exist (non-trivial) planar graphs G with χl(G) = 5.

But the Four Colour Problem (Guthrie, 1852) is to show χ(G) ≤ 4 for planar graphs G.
It was �proved� by Kempe in 1879 for which he was made FRS. In 1890 Heawood found
a mistake. Kempe's proof was similar to the proof of Theorem 4.8, and the paths used
are still known as �Kempe chains�.

The Four Colour Problem is stated in dual form. The faces of any map, i.e. connected
bridgeless plane multigraph, can be coloured with four colours so that no two contiguous
faces have the same colour. Tait (1880) found a beautiful equivalent form of this. First
observe that it is enough to colour cubic maps: see this either by triangulating the
original graph or making the following replacement.
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Theorem 4.10 (Tait, 1880). The Four Colour Theorem holds if and only if χ′(G) = 3
for every cubic bridgeless planar G.

Proof. We must show such a G is 4-face-colourable if and only if it is 3-edge-colourable.
We use colours Z2 × Z2 on faces, i.e. {00, 01, 10, 11} with addition coordinatewise mod-
ulo 2, and the same without 00 on edges.

Suppose G is 4-face-coloured. Give an edge the colour which is the sum of adjacent face
colours. Since G is bridgeless, 00 does not appear on an edge.

•
ba

c

qqqqqqqqq

MMMMMMMMM

Note a + c 6= b + c as a 6= b, so the edge colouring is proper, i.e. no two incident edges
have the same colour.

Suppose conversely G is 3-edge-coloured. Pick a face F0 and, for any other face F , walk
from F0 to F , adding up the colours of edges when crossed, and give the result to F .
Note this gives adjacent faces di�erent colours since 00 is on no edge. But we must check
the colour of F is independent of the route chosen.

This is equivalent to checking that, if we go for a circular walk from F0, returning to F0,
the sum of edges crossed is 00.

Consider the dual. It is a triangulated plane graph. Label each dual edge with the
colour of the original edge that it crosses. We must show the labels around any cycle
sum to 00. Since G was properly coloured, the edges on each triangular face are 01, 10
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and 11. Hence, the sum around any face is 00. But if we have a cycle,

∑
faces
inside
cycle

∑
edges around face ≡

∑
edges around cycle (mod 2).

Remark. Tait further conjectured, and indeed believed he had proved, that every cubic
plane bridgeless graph has a Hamiltonian cycle. Since a cubic graph has even order by
the Handshaking Lemma, colour cycle edges red and blue, and colour the remaining
edges green, i.e. χ′(G) = 3.

But in 1946 Tutte found a counterexample of order 46 (see Example Sheet 3). The
smallest counterexample has order 38.

Wagner (1935) proved that the Four Colour Theorem holds if and only if χ(G) ≥ 5 =⇒
G � K5.

Haderinger (1943) conjectured χ(G) ≥ k =⇒ G � Kk. This is easy for k = 4. The
only case known is k = 6 (equivalent to the Four Colour Theorem), k ≥ 7 is unknown.

In 1976, Appel and Haken, using ideas of Heesch, announced a computer-based proof.
Few people have read it. In 1997, Robertson, Sanders, Seymour, Thomas gave a new
simpler proof based on the same ideas.

Graphs on other surfaces

De�nition. A surface (2-dimensional, closed, compact) has an Euler characteristic E ≤
2 such that a graph drawn on this surface in such a way that each region, i.e. face, is
simply connected satis�es n −m + f = E where n is the order, m is the size and f is
the number of faces.

An orientable surface, i.e. a surface with an inside and outside, is a sphere with some
number g ≥ 0 of handles. Note E = 2− 2g.

(i) g = 1 yields the torus (E = 0).

// //

OO

////

OO

(ii) g = 2 yields the double torus (E = −2).
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There are also non-orientable surfaces, one for each value of E ≤ 1.

(i) The projective plane (E = 1).

oo oo

��

////

OO

(ii) The Klein bottle (E = 0).

// //

��

////

OO

If we have a maximal planar graph on a surface of characteristic E, then every face is a
triangle, so 2m = 3f and n−m+ f = E, so m = 3(n− E). Hence every graph on the
surface satis�es m ≤ 3(n− E).

Consider the projective plane. Then m ≤ 3n − 3, so δ(G) ≤ 5 for every graph on this
surface. By Theorem 4.1, χ(G) ≤ 6. We can draw K6 on the projective plane (see
Example Sheet 3), so in fact χ(G) = 6 is attained.

Theorem 4.11 (Heawood, 1890). If G is a graph drawn on a surface of characteris-
tic E ≤ 1, then

χ(G) ≤ H(E) =
⌊7 +

√
49− 24E
2

⌋
.

Proof. We already considered E = 1, so assume E ≤ 0. Let G be a minimal graph on
the surface having chromatic number k. Then |G| ≥ k and δ(G) ≥ k − 1, else we can
remove a vertex and colour the graph with k − 1 colours. Hence

k − 1 ≤ δ(G) ≤ 2(3(|G| − E))
|G|

= 6− 6
E

k
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as E ≤ 0, or k2 − 7k + 6E ≤ 0.

Remark. H(2) = 4.

Can equality hold? Consider E = 0, i.e. the torus or Klein bottle, when H(0) = 7. Let
G be minimal of chromatic number 7, if equality is possible, then equality holds above.
Note δ(G) ≥ 6 but e(G) ≤ 3|G| so G is 6-regular. By Brooks' theorem 4.3, G = K7.
Therefore, equality is attainable if and only if K7 can be drawn on the surface.

For the torus this is possible. Tile the plane using the shaded quadrangle forming a
torus.
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2 3 4 5 6 0

4 5 6 0 1 2 3

0 1 2 3 4 5

2 3 4 5 6 0 1

Dually, we have the following.
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How about the Klein bottle? We must embed K7 so that every face is a triangle, since
21 = m = 3(n− E). Locally, it looks like a planar triangulation.
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Without loss of generality, �x 0 and numbers 1, . . . , 6 around it. x meets 1 and 3, so
cannot be 2,0 or 5, so x is 4 or 6. By symmetry x = 4. By the same argument y is 4 or 5
but y is joined to 3 which joins x = 4, so y = 5. Hence, the pattern is now determined:
it is the previous pattern. But when we identify all 1s, all 2s etc., we get a torus. Hence,
K7 can not be embedded on a Klein bottle.

Amazingly, the Klein bottle is the only exception to

max{χ(G) : G embeds on surface S of characteristic E} = H(E).

For E ≤ 1, this is equivalent to embedding KH(E) on S. Heawood thought he had
proved this; it was completed by Ringel and Youngs (1945).





Chapter 5

Ramsey Theory

The simplest example is the pigeon-hole principle.

Suppose the edges of K6 are coloured red and blue. Then there is a monochromatic K3.
This fails for K5. •

•

• •
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Is it true if n is large enough and edges of Kn are coloured red and blue then there is a
monochromatic K4?

De�nition. In general, if s ∈ N let R(s) be the smallest n, if it exists, such that, if the
edges of Kn are coloured red and blue, there is a monochromatic Ks.

For example, R(3) = 6 by the above. Also R(2) = 2, trivially.

De�nition. It is convenient to de�ne R(s, t) to be the smallest n, if it exists, such that,
if the edges of Kn are coloured red and blue, there must be a red Ks or a blue Kt.

Then R(s) = R(s, s), R(s, t) = R(t, s), R(s, 2) = s, R(min{s, t}) ≤ R(s, t) ≤
R(max{s, t}).

Theorem 5.1 (Ramsey, 1930, Erd®s�Szekares, 1935). R(s, t) exists. Moreover,
R(s, t) ≤ R(s− 1, t) +R(s, t− 1).

Proof. It is enough to verify the inequality. Let a = R(s-1, t), b = R(s, t-1), n = a + b
and colour Kn red and blue. Pick a vertex v. Amongst the a + b − 1 edges meeting v,
there are either at least a red or b blue. We may assume the latter. So v is joined to a
Kb by blue edges. Now b = R(s, t−1), so this Kb either contains a red Ks, or it contains
a blue Kt−1 which, with v, forms a blue Kt.

Remark. (i) The proof shows that R(s, t) ≤
(
s+t−2
s−1

)
.

(ii) This is not exact, e.g. equality can hold in the above proof only if there is an
(a− 1)-regular graph of order a+ b− 1 which is false if a, b both even.

(iii) We only know R(2) = 2, R(3) = 6, R(4) = 18, no other values are known.
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De�nition. Suppose we use k ≥ 2 colours. Let Rk(s1, s2, . . . , sk) be the smallest n, if
it exists, such that, if edges of Kn are coloured 1, 2, . . . , k, there is a Ksi coloured i, for
some i.

Note R(s, t) = R2(s, t).

Theorem 5.2. Let k ≥ 2, let s1, . . . , sk ∈ N. Then Rk(s1, . . . , sk) exists.

Proof. We can either generalise the proof for Theorem 5.1 or proceed as follows.

Use induction on k. The case k = 2 is Theorem 5.1. In general, let Kn be coloured
with k colours 1, . . . , k. Go colourblind, so that colours 1 and 2 are indistinguishable.
Suppose n ≥ Rk−1(R(s1, s2), s3, . . . , sk). Either there is a Ksi coloured i for some i ≥ 3,
whence we are done, or there is a KR(s1,s2) coloured 1/2. In the latter case, be healed,
so there is a Ks1 coloured 1 or a Ks2 coloured 2.

The proof shows Rk(s1, . . . , sk) ≤ Rk−1(R(s1, s2), s3, . . . , sk). A modi�cation of the
proof of Theorem 5.1 gives

Rk(s1, . . . , sk) ≤ Rk(s1 − 1, s2, . . . , sk) +Rk(s1, s2 − 1, s3, . . . , sk) + · · ·
+Rk(s1, . . . , sk−1, sk − 1)− k + 2.

Note that the second bound is much better.

De�nition. Given r ∈ N, an r-uniform hypergraph is a pair (V,E) where E ⊂ V (r) =
{Y ⊂ V : |Y | = r}.

Example. (i) A graph is a 2-uniform hypergraph.

(ii) The complete r-uniform hypergraph of order n is K
(r)
n , has vertex set [n] and

E = V (r). So |E| =
(
n
r

)
.

Does there exist a smallest number n = R(r)(s, t) such that if we colour the edges of K
(r)
n

red and blue then there is a red K
(r)
s or a blue K

(r)
t ? For example, R(2)(s, t) = R(s, t)

and R(1)(s, t) = s+ t− 1, which again is the pigeon-hole principle.

Theorem 5.3 (Ramsey for r-sets). R(r)(s, t) exists for all r ≥ 1, s, t ≥ r.

Proof. We show that if a = R(r)(s−1, t), b = R(r)(s, t−1) and n = 1+R(r−1)(a, b) exist
then R(r)(s, t) ≤ n. Let the edges of K

(r)
n be coloured red and blue and let v ∈ V (Kr

n).
Consider the K

(r−1)
n−1 with vertex set V (K(r)

n )− {v}. Given an edge Z of K
(r−1)
n−1 , colour

it in the same colour as we gave to Z ∪ {v}. Since n − 1 = R(r−1)(a, b) this means we

get a red K
(r−1)
a or a blue K

(r−1)
b , without loss of generality assume the latter. Hence in

the original colouring there are b vertices such that every r-set formed from v and r− 1
of these b vertices is blue. Since b = R(r)(s, t − 1), these vertices either contain a red

K
(r)
s or else a blue Kr

t−1 which with v forms a blue K
(r)
t .

Colour blindness showsR
(r)
k (s1, s2, . . . , sk) exists with the natural de�nition. The bounds

obtained on R(r)(s, t) are huge.

What if we colour in�nite graphs? If we colour N(2) red and blue, do we get an in�nite
monochromatic set M , i.e. an in�nite M ⊂ N with M (2) same colour?
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(i) Colour {i, j} red if i+ j is odd. Then M the set of even numbers works.
(ii) Colour {i, j} red if max{k : 2k | i+ j} is odd. Then M = {4l : l ≥ 1} works.
(iii) Colour {i, j} red if i+ j has an odd number of distinct prime factors. No explicit

set M is known.

Theorem 5.4 (In�nite Ramsey). Let N(r) be coloured with k colours. Then there is an
in�nite M ⊂ N such that M (r) is monochromatic.

Proof. By induction on r. The case r = 1 is just the pigeon-hole principle. We shall �nd
a sequence v1 < v2 < v3 < · · · of elements of N and a sequence of colours c1, c2, c3, . . .
such that if Y ⊂ {v1, v2, v3, . . . }(r) and minY = vi then Y has colour ci.

Given such a sequence we are home, because there is a subsequence vi1 , vi2 , vi3 , . . . for
which ci1 , ci2 , ci3 , . . . is constant and then we take M = {vi1 , vi2 , vi3 , . . . }.

To construct these sequences, suppose we so far found v1 < v2 < · · · < vj and colours
c1, c2, . . . , cj and an in�nite set Nj ⊂ {n ∈ N : n > vj} such that if Y is an r-subset
of {v1, . . . , vj} ∪ Nj and minY = vi then Y has colour ci. Starting with N0 = N it
su�ces to show we can get from j to j + 1. Let vj+1 = minNj . For each subset
Z ⊂ (Nj − {vj})(r−1), colour it the same colour as {vj+1} ∪ Z. By Ramsey for r − 1,
there is an in�nite subset Nj+1 ⊂ Nj − {vj+1} where every Z has the same colour
cj+1.

De�nition. A set Y ⊂ N is big if |Y | ≥ minY .

Example. So {3, 9, 24} is big, {5, 37, 36, 209} is not.

Theorem 5.5. Given s, k, r ≥ 1 there exists B(s, k, r) such that if n ≥ B(s, k, r)
and {s, s + 1, . . . , n}(r) are coloured with k colours then there is a big subset Y ⊂
{s, s+ 1, . . . , n} with Y (r) monochromatic.

Proof. Trivially, if the assertion holds for some N , it will hold for all n ≥ N . So if the
theorem is false, the assertion fails for all n.

Suppose not. Then for each n ≥ s de�ne a colouring

cn : {s, s+ 1, . . . , n}(r) → [k]

with no monochromatic big subset. Enumerate {s, s + 1, . . . , n}(r) as Z1, Z2, . . . . We

can pick an in�nite subsequence c
(1)
1 , c

(1)
2 , . . . of cs, cs+1, . . . on which the colour of Z1

is constant, call it c(Z1). Then pick an in�nite subsequence c
(2)
1 , c

(2)
2 , . . . on which

the colour of Z2 is constant, c(Z2) say. Repeat, picking a subsequence c
(j)
1 , c

(j)
2 , . . .

of c
(j−1)
1 , c

(j−1)
2 , . . . on which the colour of Zj is c(Zj). Hence we get a colouring c :

{s, s + 1, . . . , n}(r) → [k] with no monochromatic big subset: for if c were constant on

Y (r), let l = max{j : Zj ∈ Y (r)}, then c agrees with c(l)1 on Y (r) and c
(l)
1 = cn, some n,

which has no big monochromatic Y .

But by Ramsey's In�nite Theorem there is an in�nite M ⊂ {s, s+ 1, . . . } such that c is
monochromatic on M (r). Now let m = minM and let Y be the �rst m elements of M .
Then Y is big and c is monochromatic on Y (r), contradiction.
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Remark. Theorem 5.5 is a purely �nite statement, though we proved it via an in�-
nite argument, actually using compactness. Amazingly, this theorem cannot be proved
without recourse to such argument (Paris, Harrington 1977). This is the �rst natural
example of Gödel's Incompleteness Theorem.

Other structures support Ramsey-like theorems. For example, van der Waerden's the-
orem states if we colour the integers 1, 2, . . . , n with k colours there exists an l-term
arithmetic progression in one colour, for su�ciently large n.

The following Ramsey numbers are known, with R(3, 9), R(3)(4, 4, 4), R(4, 5) having been
found in 1982, 1991, 1992, respectively.

R(3, 3) = 6 R(3, 4) = 9 R(3, 5) = 14 R(3, 6) = 18
R(3, 7) = 23 R(3, 8) = 28 R(3, 9) = 36 R(4, 4) = 18

R(4, 5) = 25 R3(3, 3, 3) = 17 R(3)(4, 4, 4) = 13

The following bounds have been established.

• (Upper bounds) We have

R(s) ≤
(

2s− 2
s− 1

)
∼ 22s−2

√
2πs

,

and the only improvement made in the last 70 years is an extra factor of 1√
s
.

• (Lower bounds) Trivially,
R(s) > (s− 1)2.

Consider the Turán graph Ts−1((s− 1)2). There is no Ks, so in particular no red
Ks, and no s vertices with no edges between them, so no blue Ks. The bound

R(s) > s3

is more tricky. The best known construction gives

R(s) > e
log2 s

4 log log s .

However, this is still basically zero compared to the upper bound.



Chapter 6

Probabilistic Methods

Theorem 6.1 (Erd®s, 1947). Let s ≥ 3. Then R(s) ≥ 2(s−1)/2.

Proof. Colour the edges of Kn independently red and blue with probability 1
2 . There

are
(
n
s

)
Ks's in Kn. Each is monochromatic with probability 2

(
1
2

)(s
2). So the expected

number of monochromatic Ks is
(
n
s

)
21−(s

2). But if n =
⌊
2(s−1)/2

⌋
, then(

n

s

)
21−(s

2) ≤ 2
s!
ns2−(s

2)

< (n2−(s−1)/2)s ≤ 1.

But the expected number can be less than 1 only if there is a colouring with no mono-
chromatic Ks.

We could derandomise this argument by observing that all we did was to prove the
average number of monochromatic Ks over all colourings of Kn is less than 1. But this
would be to lose the potential of the pobabilistic approach.

Recall the following from Probability. Let Ω be a �nite probability space, e.g. in the above

argument Ω is the set of all 2(n
2) red and blue colourings ofKn, with uniform distribution.

An event is a subset A ⊂ Ω. A random variable is a function X : Ω → R. The
expectation of X is EX =

∑
ω∈ΩX(ω) P(ω). It is important to note that expectation

is linear.

E(X + Y ) =
∑
ω∈Ω

(X(ω) + Y (ω)) P(ω)

=
∑
ω∈Ω

X(ω) P(ω) +
∑
ω∈Ω

Y (ω) P(ω)

= EX + EY.

The indicator function of an event A is IA : Ω → {0, 1},

IA(ω) =

{
0 if ω 6∈ A
1 if ω ∈ A

.

Note that E IA =
∑

ω∈Ω IA(ω) P(ω) =
∑

ω∈A P(ω) = P(A). Variables X that count can
often be written as sums of indicators, e.g. if X(ω) is the number of monochromatic Ks
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in the above proof, then for each α ∈ [n](s), let Iα indicate that Ks on the vertex set α
is monochromatic. Then X =

∑
α Iα, so

EX =
∑
α

E Iα =
∑
α

P(Ks on α is monochromatic)

=
∑
α

21−(s
2) =

(
n

s

)
21−(s

2).

If X is a counting variable, X =
∑

β Iβ then EX =
∑

β E Iβ =
∑

β P(Iβ = 1).

Theorem 6.2. The graph G has an independent set, i.e. an edgeless set, of size at least∑
v∈G

1
d(v)+1 ≥

|G|
d+1 ,

where d is the average degree, i.e. e(G) = |G|d/2.

Proof. Take a random ordering of the vertices, use the greedy colouring algorithm, and
let X be the number of vertices coloured 1. Then X =

∑
v∈G Iv where Iv is the indicator

that v gets colour 1. Then

P(Iv = 1) ≥ P(v precedes all its neighbours) =
1

d(v) + 1
.

Thus

EX =
∑
v∈G

P(Iv = 1) ≥
∑
v∈G

1
d(v) + 1

.

So there is some ordering where

X ≥
∑
v∈G

1
d(v) + 1

.

Since 1
X−ε + 1

X+ε ≥
2
X , we get

∑
v∈G

1
d(v) + 1

≥ |G|
d+ 1

.

Remark. This is equivalent to Turán's theorem when applied to the complement. The
full theorem can be recovered by examining cases of equality.

We keep using P(X > EX) < 1, which is a special case of Markov's inequality. Since

I{|X|>t} <
|X|
t , take expectations to obtain

P(|X| > t) <
E|X|
t

.

De�nition. Let G(n, p) be the space of all 2(n
2) labelled graphs with vertex set [n],

where a given graph with m edges has probability pm(1 − p)(
n
2)−m. This is equivalent

to inserting edges independently with probability p.
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In our earlier Ramsey example the red graph was an element of G(n, 1
2). We showed the

clique size, i.e. the size of a maximum complete subgraph, is at most 2 log2 n + 1 and
the independent set size is at most 2 log2 n+ 1, in one graph at least. Hence for such a
graph G,

χ(G) ≥ n

2 log2 n+ 1
.

This shows that the chromatic number can be far larger than the clique number, a
perhaps counterintuitive fact. In fact, there are constructions of triangle-free graphs
with large chromatic number. (See Example Sheet 3.)

Theorem 6.3 (Erd®s, 1959). Let k, g ∈ N with g ≥ 3, k ≥ 2. Then there exists a
graph G with χ(G) ≥ k and girth at least g.

Proof. Consider a random graph G ∈ G(n, p) where p = n−1+1/g. Let Xl be the number
of cycles of length l and let X = X3 +X4 + · · ·+Xg−1. Then

EX =
g−1∑
l=3

EXl ≤
g−1∑
l=3

nlpl =
g−1∑
l=3

n
l
g

≤ gn
g−1

g <
n

4

if n is su�ciently large. Let A be the event {X > n
2 }, then by Markov P(A) < 1

2 if n is
su�ciently large.

Let Y be the number of independent sets of size t =
⌈

n
2k

⌉
. Then

EY =
(
n

t

)
(1− p)(

t
2)

≤ nt(e−p)(
t
2)

≤ nte(−p
n2

9k2 )

= exp
{
t log n− p

n2

9k2

}

= exp

t log n− n
1+

1
g

9k2


<

1
2

if n is su�ciently large, using approximations which are explained separately later. Let
B be the event Y ≥ 1, then by Markov P(B) < 1

2 for su�ciently large n.

Since P(A∪B) < 1 for su�ciently large n, there exists a graph G where neither A nor B
happens, so it has at most n

2 short cycles and no independent set of size
⌈

n
2k

⌉
. Form G′

by removing a vertex from each short cycle. Then G′ has girth at least g and |G′| ≥ n
2 .

Since G′ has no independent set of size at least n
2k , χ(G′) ≥ |G|

n/2k ≥ k.

We have made the following approximations.

(i) 1− p ≤ e−p true for all p.
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(ii) Let t =
⌈

n
2k

⌉
, then

(
t
2

)
= n2

8k2 +O(n) > n2

9k2 for su�ciently large n.
(iii) For �xed L,

en

nL
>

n

(L+ 1)!
→∞ as n→∞.

n = logm,
m

(logm)L
→∞ as m→∞.

mε

(logm)L
=

[
m

(logm)
L
ε

]ε

→∞.

Recall that z(n, t) = O(n2−1/t). To get a lower bound we would consider random
n×n bipartite graphs with p as large as possible, so the expected number of Kt,t is less

than 1. The expected number of Kt,t's is
(
n
t

)2
pt2 , so p ≈ n−2/t, giving an expected size

of pn2 ≈ n2−2/t. We can do better by making use of the linearity of expectation.

Theorem 6.4. Let n ≥ t ≥ 2. Then z(n, t) > 3
4n

2−2/(t+1).

Proof. Let X,Y be classes of n vertices and generate random n× n bipartite graphs by
inserting edges independently with probability p. Let J be the size of this graph and K
the number of Kt,t's. By throwing out an edge from each Kt,t we get a graph with no

Kt,t, so z(n, t) > J −K. Now EJ = pn2 and EK =
(
n
t

)2
pt2 , so

E(J −K) = pn2 −
(
n

t

)2

pt2

≥ pn2 − 1
4n

2tpt2 .

Taking p = n−2/(t+1), we obtain E(J − K) ≥ 3
4n

2−2/(t+1), so there is a graph with

J −K ≥ 3
4n

2−2/(t+1).

So far we used Markov's inequality to show that some random variable is unlikely to
be large. What if we want to say a variable is likely to be large? The variance of X is
E(X − EX)2. Then by Markov's inequality,

P(|X − EX| > t) = P((X − EX)2 > t2)

<
E(X − EX)2

t2
=

Var(X)
t2

which is Chebychev's inequality.

Lemma 6.5. Let Xn : Ωn → R be a sequence of random variables. Suppose that
E(X2

n)/(EXn)2 → 1 as n → ∞, or equivalently Var(Xn)/(EXn)2 → 0. Then for any
constant c > 0 we have

P(|Xn − EXn| ≥ cEXn) → 0

as n→∞. In particular, P(Xn = 0) → 0.

Proof. Apply Chebyshev's inequality with t = cEXn. For the second part, take c = 1.
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Note if X is counting,

P(X = 0) ≤ P(|X − EX| ≥ EX)
≤ P(|X − EX| > t) for all t < EX

<
Var(X)
t2

.

So P(X = 0) ≤ Var(X)/(EX)2. We compute Var(X) as follows.

Var(X) = E(X − EX)2 = E(X2 − 2X EX + (EX)2) = EX2 − (EX)2.

Suppose X is a sum of indicators, X =
∑

A IA. Then

EX =
∑
A

E IA =
∑
A

P(A),

so

(EX)2 =
(∑

A

P(A)
)2

=
∑
A,B

P(A) P(B).

Now

X2 =
(∑

A

IA

)2
=

∑
A,B

IAIB =
∑
A,B

IA∩B.

So

EX2 =
∑
A,B

E IA∩B =
∑
A,B

P(A ∩B) =
∑
A,B

P(A) P(B|A).

So

Var(X) =
∑
A,B

P(A) [P(B|A)− P(B)] .

Note there is no contribution from a pair A,B that is independent.

Theorem 6.6. Let ω(n) → ∞. Let G ∈ G(n, p). If p = log n−ω(n)
n then G has isolated

vertices almost surely. If p = log n+ω(n)
n , then G has no isolated vertices almost surely.

De�nition. Here an event A happens almost surely if P(A) → 1 as n→∞.

Proof. Let X be the number of isolated vertices. Then X =
∑

v Iv where Iv indicates
whether v is isolated. So EX = n(1− p)n−1. Also

Var(X) =
∑
u,v

P(u isolated) [P(v isolated|u isolated)− P(v isolated)]

= n(1− p)n−1
[
1− (1− p)n−1

]
+ n(n− 1)(1− p)n−1

[
(1− p)n−2 − (1− p)n−1

]
≤ EX + n2(1− p)n−1p(1− p)n−2
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= EX + p
1−p(EX)2.

If p = log n+ω(n)
n then

EX = 1
1−pn(1− p)n

≤ 1
1−pne

−pn → 0,

so X = 0 almost surely by Markov's inequality. If p = log n−ω(n)
n then

EX ≈ 1
1− p

ne−pn →∞.

(Here we could also use that 1− p ≥ e−p−p2
if p < 1

4). So

VarX
(EX)2

≤ 1
EX

+
p

1− p
→ 0,

so X 6= 0 almost surely by Chebyshev's inequality.

Remark. This is a typical threshold phenomenon.

As a �nal example, consider Kd ⊂ G ∈ G(n, p). Let Xd be the number of Kd's in

G ∈ G(n, p), then EXd =
(
n
d

)
p(

d
2) = µ(d), say. Now

µ(d) ≈ [np(d−1)/2]d

d!

so if d > (2 + ε) log1/p n then µ(d) → 0, whereas if d < (2− ε) log1/p n then µ(d) →∞.

Theorem 6.7. Let 0 < p < 1 be �xed. Let µ(d) =
(
n
d

)
p(

d
2).

(i) If µ(d) → 0 then G ∈ G(n, p) almost certainly does not contain a Kd.
(ii) If µ(d) →∞ then G ∈ G(n, p) almost certainly contains a Kd.

Proof. The �rst assertion follows from Markov's inequality and for the second we need
only show Var(X)/(EX)2 → 0 by Chebychev's inequality.

Now let Xd =
∑

α Iα, where α runs over [n](d) and Iα indicates G[α] is complete. We
know

VarX =
∑
α,β

P(Iα = 1) [P(Iβ = 1|Iα = 1)− P(Iβ = 1)] .

Now Iα and Iβ are independent if |α∩ β| ≤ 1, because there is no common edge, and in
general P(Iβ = 1|Iα = 1) depends only on the value of l = |α ∩ β|. Hence

VarX =
(
n

d

)
p(

d
2)

d∑
l=2

(
d

l

)(
n− d

d− l

) [
p(

d
2)−(l

2) − p(
d
2)

]
where

(
d
l

)(
n−d
d−l

)
is the number of β's meeting α in exactly l vertices. Ignoring the �nal

subtracted term, we have

VarX
(EX)2

≤ 1
µ(d)

d∑
l=2

(
d

l

)(
n− d

d− l

)
p(

d
2)−(l

2)
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=
1(
n
d

) d∑
l=2

(
d

l

)(
n− d

d− l

)
p−(l

2)

≤
d∑

l=2

(
d
l

)(
n−l
d−l

)(
n
d

) p−(l
2)

=
d∑

l=2

(
d
l

)2(
n
l

) p−(l
2) =:

d∑
l=2

al

using
(
n
d

)(
d
l

)
=

(
n−l
d−l

)(
n
l

)
. By looking at the ratios

al+1

al
, we see al decreases then increases

and al ≤ max{a2, ad} and indeed
∑
al ≤ da2 + Cad where C is some constant. Since

da2 ≤ 2d5

n2
1
p → 0

because d ≤ (2 + ε) log1/p n when µ(d) →∞, and ad = 1
µ(d) → 0, we are done.

Remark.
al+1

al
=

(d− l)2

(l + 1)(n− l)

(
1
p

)l
.

We may assume d ≈ 2 log1/p n. If l = o(log n) then
al+1

al
< 1. For larger l, choose

1 < R < 1
p and C ′ so if d− l < C ′ then

al+2

al+1
> R

al+1

al
. Therefore

d∑
l=2

al ≤ da2 + ( 1
R + C ′)ad.

Corollary 6.8. Let 0 < p < 1 be �xed. Then the clique number, i.e. the size of the
largest complete subgraph, of G ∈ G(n, p) is (2 + o(1)) log1/p n almost surely.

Remark. With more care, we can compute the clique number to within 1.





Chapter 7

Eigenvalue Methods

De�nition. Let G be a graph with vertex set [n]. The adjacency matrix of G is the
n× n matrix A = (aij),

aij =

{
1 if ij ∈ E(G)
0 otherwise

.

Since A is real symmetric, it is diagonalisable and has n real eigenvalues, which are easy
to compute and give useful information about G. For example, (A2)ij =

∑
k aikakj is

the number of walks of length 2 from i to j. In general, (Ad)ij is the number of walks
of length d from i to j.

De�nition. If G is a connected graph then the diameter diam(G) is the maximum
distance between any two vertices.

The set {I, A,A2, . . . , Adiam(G)} is linearly independent, so in particular G has at least
diam(G) + 1 distinct eigenvalues. (Note that changing the labelling of the vertices of G
is e�ectively just a change of basis and does not change the eigenvalues.)

Since A is real symmetric, take an orthonormal basis e1, . . . , en of eigenvectors. Take a
unit vector x, so x = ξ1e1 + · · ·+ ξnen and |x|2 = ξ21 + · · ·+ ξ2n = 1. Now xTAx = λ1ξ

2
1 +

· · · + λnξ
2
n where λ1, . . . , λn are the eigenvalues of A. In particular, if λmin := mini λi,

λmax := maxi λi then λmin = min|x|=1 x
TAx, λmax = max|x|=1 x

TAx.

In particular, if E(G) 6= ∅, say {1, 2} ∈ E(G), taking x = 1√
2
(1, 1, 0, . . . , 0) then λmax ≥

1; and taking x = 1√
2
(1,−1, 0, . . . , 0) then λmin ≤ −1.

Let W ⊂ [n] and let H be the induced subgraph G[W ]. Let y be a vector in R|W |

and let x be the vector corresponding to y with zeros in the coordinates [n]−W . Pick
y′ corresponding to λmin(H), then (x′)TA(x′) ≥ λmin(G), and likewise, choosing y′′

corresponding to λmax(H), then (x′′)TA(x′′) ≤ λmax(G). Hence

λmin(G) ≤ λmin(H) ≤ λmax(H) ≤ λmax(G).

If G is bipartite then A =
(

0 ∗
∗ 0

)
, after an appropriate relabelling of vertices. Consider the

characteristic polynomial det(A− tI). A term in the expansion is obtained by taking j
t's from top left block, involving k−j entries taken from bottom left, and hence involving
n − k − (k − j) entries from bottom right, so power of t is n − 2k + 2j. Thus if n is
even, the characteristic polynomial is a polynomial in t2; if n is odd, it is t times such a
polynomial. In particular, if λ is a root, so is −λ with the same multiplicity.
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Theorem 7.1. Let G be a graph. Then

(i) δ(G) ≤ λmax ≤ ∆(G);
(ii) |λ| ≤ ∆(G) for all λ, i.e. λmin ≥ −∆(G).

If G is connected, then also

(iii) λmax = ∆(G) if and only if G is regular, in which case λmax has multiplicity 1;
(iv) λmin = −∆(G) if and only if G is regular and bipartite, in which case λmin has

multiplicity 1.

Proof. Let y = (a1, a2, . . . , an) ∈ Rn, then (Ay)i =
∑

j∈Γ(i) aj and yTAy =
2

∑
ij∈E(G) aiaj .

Take y = 1√
n
(1, 1, . . . , 1), then yTAy = 2e(G)

n = d ≥ δ(G) where d is the average degree,

showing the �rst part of (i). Let m ∈ [n] be such that am ≥ |ai| for all i. We may
assume am = 1. Then λ = (Ay)m =

∑
j∈Γ(m) aj . In particular,

|λ| ≤
∑

j∈Γ(m)

|aj | ≤ d(m) ≤ ∆(G)

proving (ii) and the second half of (i).

For (iii) and (iv) note that we can recover any information about eigenvalues by consid-
ering components of G, e.g. if G has two disjoint components then the adjacency matrix
is

(
A 0
0 B

)
.

Suppose now λ = ∆. Then
∑

j∈Γ(m) aj = ∆ which means d(m) = ∆ and aj = 1 for all
j ∈ Γ(m). Applying this argument with one of these j's instead of m shows d(j) = ∆
and ai = 1 for all i ∈ Γ(j). Since G is connected, we repeat to get that y = (1, 1, . . . , 1)
and G is ∆-regular, proving (iii).

Finally, if λ = −∆ then
∑

j∈Γ(m) aj = −∆, so d(m) = ∆ and aj = −1 for all j ∈ Γ(m).
Similarly, for all j ∈ Γ(m), d(j) = ∆ and ai = 1 for all i ∈ Γ(j). Thus G is ∆-regular,
ai = ±1 for all i and aiaj = −1 for all ij ∈ E(G). So G is bipartite as we can partition
G according to whether ai = ±1. The converse is clear since A(1, 1,−1, 1 . . . , 1)T =
−∆(1, 1,−1, 1, . . . )T .

Given a graph G, an orientation ~G of G is obtained by giving a direction to each edge.
The incidence matrix B of ~G is the n× e(G) matrix B = (bvl),

bvl =


1 if l = uv for some u

−1 if l = vu for some u

0 otherwise

.

De�nition. The (combinatorial) Laplacian on the graph G is L = BBT . Note that
L = D −A where D = diag(d(1), . . . , d(n)), so L does not depend on the orientation.

Let the eigenvalues of L be µ1 ≤ µ2 ≤ · · · ≤ µn. Then since L is positive semi-de�nite,
we have µ1 ≥ 0. Indeed, xTLX = (BTx)T (BTx) =

∑
ij∈E(G)(xi − xj)2, so µ1 ≥ 0, and

indeed taking x = 1√
n
(1, 1, . . . , 1) we see µ1 = 0.

Proposition 7.2. µ2 = min{xTLx/‖x‖2 : x 6= 0,
∑n

i=1 xi = 0}.
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Proof. We have an orthonormal basis e1, . . . , en with Lei = µiei. We can take e1 =
1√
n
(1, . . . , 1). Now suppose

∑n
i=1 xi = 0. Writing x =

∑n
i=1 ξiei we have ξ1 = x · e1 = 0

and

xTLx =
n∑

i=1

µiξ
2
i ≥

n∑
i=1

µ2ξ
2
i = µ2‖x‖2

Theorem 7.3. Let G be a graph and U ⊂ V (G). Then there are at least µ2|U ||V −
U |/|G| edges between U and V − U .

Proof. Wemay assume 0 < k = |U | < n = |V (G)|. Let x = (x1, . . . , xn) where xi = n−k
if i ∈ U and xi = −k if i ∈ V −U . Since L is symmetric, there is an orthonormal basis of
eigenvectors e1, . . . , en with Lei = µiei where e1 = 1√

n
(1, . . . , 1). Then x =

∑n
i=2 ξiµiei

and

xTLx =
n∑

i=2

ξ2i µi ≥ µ2

n∑
i=2

ξ2i = µ2‖x‖2 = µ2kn(n− k).

But

xTLx =
∑

ij∈E(G)

(xi − xj)2 = |F |n2

where F is the set of edges between U and V − U .

Remark. If µ2 is large, the graph �expands�.

How big can n = |G| be if ∆(G) ≤ d and diam(G) ≤ 2? Pick any v ∈ V (G). Then

|{w ∈ V : d(v, w) = 1}| = |Γ(v)| ≤ d

|{w ∈ V : d(v, w) = 2}| ≤ d(d− 1)

and hence n ≤ 1 + d+ d(d− 1) = d2 + 1.

If equality holds, G is d-regular and contains no C3 or C4, i.e. it has girth g(G) = 5.

Does there exist a d-regular graph of diameter 2 and order d2 + 1? Note this is the
maximum possible order and equivalent to asking for diameter 2, girth 5. Such a graph
is called a Moore graph.

Example. Consider the cases d = 1, d = 2, d = 3. These lead to K2, C5, and the
Petersen graph, respectively.
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Note that all of these are unique solutions.

De�nition. A strongly regular graph with parameters (d, a, b) is regular of degree d,
every pair of adjacent vertices has exactly a common neighbours and every pair of non-
adjacent vertices has exactly b common neighbours.

Remark. Therefore, a Moore graph is a strongly regular graph with parameters (d, 0, 1).

Theorem 7.4. Let G be a strongly regular graph with parameters (d, a, b) and order n.
Then

1
2

{
n− 1± (n− 1)(b− a)− 2d√

(a− b)2 + 4(d− b)

}
are natural numbers.

Proof. We may assume G is connected for otherwise b = 0 and each component is a
Kd+1.

Let A be the adjacency matrix of G. Then

(A2)ij =


d if i = j

a if ij ∈ E(G)
b if ij ∈ E(Ḡ)

which is equivalent to G being strongly regular with parameters (d, a, b).

•v a Γ(v)
bbbbbbbbbbbbbbb
\\\\\\\\\\\\\\\

d

d−b V (G)−Γ(v)−{v}

d−1−a

b

Let J be the matrix with all entries 1 and set B = J − I − A, so B is the adjacency
matrix of Ḡ. Equivalently to G being strongly regular with parameters (d, a, b), we have
A2 = dI + aA+ bB. From the diagram, BA = 0I + (d− 1− a)A+ (d− b)B. So

A3 = dA+ aA2 + bBA

= dA+ aA2 + b[(d− 1− a)A] + (d− b)[A2 − dI − aA],

since bB = A2 − dI − aA. Thus A satis�es a cubic,

A3 − (d− b+ a)A2 − [d(b− a) + d− b]A+ d(d− b)I = 0.

Now consider the eigenvalues of A. Since G is d-regular, d is an eigenvalue of multiplic-
ity 1. But A satis�es a cubic, so has only two other eigenvalues λ1, λ2 with multiplicities
r, s. Hence d, λ1, λ2 are roots of

t3 − (d− b+ a)t2 − [d(b− a) + d− b]t+ d(d− b) = 0,
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so

λ1, λ2 = 1
2{a− b±

√
(a− b)2 + 4(d− b)}.

Now r+ s = n− 1 and d+ rλ1 + sλ2 = trA = 0. Solve for r, s to obtain the result.

Theorem 7.5. There exists a Moore graph only if d ∈ {1, 2, 3, 7} and possibly d = 57.

Proof. Recall that n = d2 + 1, so

1
2

{
d2 +

d2 − 2d√
4d− 3

}
∈ N.

Hence either d = 2, in which case d2 − 2d = 0, or 4d − 3 = l2 where l ∈ Z. So
r = 1

2{d
2 + d2−2d

l }, so l5 + l4 + 6l3 − 2l2 + (9 − 32r)l − 15 = 0. So l | 15. Thus
l ∈ {1, 3, 5, 15}, so d ∈ {1, 3, 7, 57}, and the special case d = 2.
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