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Chapter 1

Fourier Analysis on Finite Abelian Groups

The classification of finite Abelian groups tells us that they are all products of cyclic
groups, i.e., they have the form

Ly X Ly X ==+ X Loy,

where we write Zy = Z/NZ. Two important examples are Zy and Zj, which we shall
write as .

A character on a finite Abelian group G is a homomorphism ¢: G — C*, the multi-
plicative group of C. If |G| = n then for every x € G we have nz =0, so (¢(z))” =1,
i.e., ¥ (x) has to be an nth root of unity.

Example. (i) If G = Zy, let w = €2™/N_ Then for every r € Zy the function
x — w' is a character. All characters have this form since (1) determines ),
ie, if ¥(1) = w" then ¢(x) = " for every x € G.

(ii) If G = IFI; let w = €™/ and for each r = (ri,...,7) € G and each
x=(x1,...,2) € G write r - = rix1 + - - + rprg. Then the map z — W™ is a
character. Again this gives all characters, since 1 is determined by its values on
(1,0,...,0), (0,1,0,...,0),...,(0,...,0,1).

(iii) In general, if G = Zp, X - X Zpy,, then setting wy,, = e2™/™;  the function
T Wk wkTE s a character for every (rq,...,7%) € G. We shall see that

these are all the characters on G.

Lemma 1.1. If ¢ and y are distinct characters on finite Abelian group G, then

Esec ¢(x)x(x) = 0.

Proof. Let us write ¢ = 1. It is easy to check that ¢ is a non-trivial character. Then See A.1.1.

E, ¢(x) =E, gb(x + y)

for any y € G, since adding y permutes the elements of G. But that is

Ee ¢(2)p(y) = ¢(y) Ee ¢(x).

Since ¢ is non-trivial, we can find y such that ¢(y) # 1, so E; ¢(z) = 0. O



See A.1.2
and A.1.3.

2 Fourier Analysis on Finite Abelian Groups

We shall make frequent use of two normed spaces, Lo(G) and l2(G). If f: G — C, then

2
HszQg(G) = |f(@)P
zeG

Proposition 1.2. The characters form an orthonormal basis of La(G).

Proof. We have just shown that distinct characters are orthogonal. Also, E,|i(x)|? =1
since 1 (z) is always a root of unity. Since we have constructed |G| different characters,
the proposition is proved. ]

Let G be a finite Abelian group and let f: G — C. We define G, the dual group of G,
to be the group of all characters on GG under pointwise multiplication.

The Fourier transform f of f is the function from G to C, given by the formula

() = Eveq fz)9().

Example. If G = Zy, w = €2™/N | then let us identify r with the character z — w'®
Then

-F (.%') 27rz7"x/N

i(f(o) _|_f(1)62m'r/N + f(2)€47rir/N + - )

H

Compare this with the “usual formula”

— /1 f(x)€27rirx dr.
0

Proposition 1.3. Let G be a finite Abelian group. Then G=0G.

Proof. For z € G let 6,: G — C be the map ¢ — ¥(x). Then it is easy to check that

the map z — d, is a homomorphism from G to G. If z # y, then we can find ¢ € G
such that ¢ (x) # ¢ (y) since there are |G| linear independent characters. It follows that

8z # 8y, 50 the map x +— d, is an injection. Therefore, |G| < |G| < |G| < |G]. O

Proposition 1.4. The Fourier transform has the following three properties.

(i) (Plancherel identity) (f,§) = (f,g), i.e

> FW)i(®) = Baeq f(x)g(w)

el

In particular, || fll,, ¢ = [1fllL.()-
(ii) (Inversion formula) f(x) =3, e f(¥)¥(2).



(iii) (Convolution identity) Define f % g and f % g by
(f*9) (@) = Bypama FW)9(2),  (F59)( Z f(o

Thenm:fgandf*g:@.
Proof. (i)
= fW)i@)
P
= Z E, f(2)(z) Ey g(y)d(y)
— ]ECC Y f ZTZJ T —
If x # y then pick ¢ such that ¢(z —y) # 1. Then
Yov@—y) =) v —y)=dx—y)> vz —y)
() (] P
so >, (z—y)=0. f =y then >, ¢(z —y) = |G|. Hence we obtain

Eqy|G|f(2)9(y)0uy = Eo|G|P(y = 2) f(2)g(y) = (f,9)-
(i)

(iii) We first show that m(w) = fﬁ(w),

F*g(¥) = Eq [+ g(2)p(x)
- E Ey-{—z x f Yy
E Ey—i—z T f Yy
= (Ey f(1)¥(y))

= fg(¢)

We claim that f* g= E For ¢ € é,

Fow) = Eq f(2)g(a)(x)
=E. Y (1)1 (2)3(d2)da ()b ()
1,02

= Z f ¢1 ¢2 5¢1¢2¢
o1,P2

= > f(¢1)d(2)
P1Pp2=1)
= f*g(v)

2
N
<
—~
8
~—

(y)
( )w(y)g(z)w
) (E

as required.



See A.1.4.

See A.1.5
and A.1.6.

See A.1.7.

4 Fourier Analysis on Finite Abelian Groups

If Ais a subset of G, we will write A(x) instead of x a(z) for the characteristic function.
Notice that A(0) = E; A(x) - 1 = |A|/|G]|, the density of A in G. Also,

_ Al

Y AW = ol A(@)]? = By A(z) = al
v

Theorem 1.5 (Roth’s Theorem in F%). Let A be a subset of F% of density at least 8/n.
Then A contains a subset of the form {z,z + d,x 4+ 2d}, d # 0, or equivalently, z,y, z
not all equal such that x +y + z = 0.

Proof. A contains such a triple as long as
Baoty+z=0 A(@)A(y)A(z) > 37"
But

Ertyezmo A(2)A(y)A(z) = Ax Ax A0)

= A% A% A@)p(0)
P
=Y A@W)’
P
= A0+ A@W)°
Y#0
> A(0)* = Y |Aw)
YF#0
- ) )
> A(0)° = max| A(v)| ;{)\A(w)r

Hence, if |A| = 6 this is equal to 6% — 5max¢¢o|fl(1/))|. As a convention, if A C G then
|A| means the density of A.

In particular, if |A(¢)| < §2/2 for every  # 0 then

Botyrz—0 A(@)AW)A(z) 2 5 =2 —5 > 37"

5 256
2 n3
for all n € N, so we are done.

Otherwise, there exists 1) # 0 such that |A()| > §2/2. Suppose this corresponds in
reFL, e,

U(@) =
where w = €2™/3. So A()) = Ep A(x)w"*. Let f(z) = A(x) — 6 and define X; = {x :
r-x =i} fori=0,1,2. Then
A(’QD) = %(ExeXo A(x) + W]E:BGX1 A(l’) + WQ ExeXz A(x))
%(ExeXo f(‘r) + W]Exe)ﬁ f(x) + w2 EIGXQ f(x))



Since |A(v))| > 62/2, there must exist i such that
2

o
Erex, S(2)] 2 5.

It follows that there exists j such that
52
Epex; f(x) > 1

for the following reason. E; f(z) = 0 so if

62
ExEXi f(l') < _5
then
52
Epex, f(z) > 1

for some j # i. It follows that
52
so the density of A in X is greater then § by a factor of at least 14 /4.

This allows us to iterate since X; = Fg_l. At each iteration, we lose a dimension, but See A.1.8.
the density 1 goes up by a factor of at least 1 + /4. In particular, after 4/9 steps, the

density reaches at least 25. Then after 4/26 steps it reaches 44, etc. Since the density

can never exceed 1, the iteration stops before we reach

4,04 04 8
5 20 46 )

steps. So long as n > 8/§, we obtain a triple of the desired kind.
We also need to check that at each stage “6 > 8/n”. But if 6 > 8/n then

(5(1—1—5)28(1—1-2)2 8 . O
4 n n n—1







Chapter 2

Roth’s Theorem

The aim of this section is to prove the following result.

Theorem 2.1. There exists a constant C' > 0 such that if N € N and A C [N] has
cardinality at least CN/loglog N then A contains an arithmetic progression of length 3.

The proof will occupy the rest of the section. To begin with, let A, B,C C Zy and
suppose that N is odd. Then

Eotz—2y A(2)B(y)C(2) = Eaqz—y A(2) B2(y)C(2)

where Ba(y) = B(y/2). Let a, 3, be the densities of A, B, C' and note that the density
of By is also 8. Then the last expression is

(A C,By) = (AC, By)

ZAOA)

where we identify r with the function z — w™, w = 2™/N,

> A(0)B )= D _JAM)|Ba(r)]|C ()]
r#0
> affy - rg;gcwmmézr, tef

> oy — maxl A(r)] | B |

= afy — (B7)"/? r}}?ggclfi(r)l.

Therefore, either the original expectation is at least a3y/2 or there exists r # 0 such
that [A(r)] > a(87)/2/2.

Lemma 2.2. Let N € N and ¢ > 0. Let ¥: Zy — C be a character. Then it is
possible to partition Zpy into arithmetic progressions P;, when viewed as subsets of
{0,1,...,N — 1}, of length at least ¢(¢)v/N such that the diameter of ¢ (P;) is at most
e for every i. The constant can be taken to be c(g) = ¢/8m.

Proof. Let k = |V N|. Since the unit circle has circumference 27, there must be two of See A.2.1.



See A.2.2.
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the values 1(0),...,%(k) that are within 27 /k of each other. Since 1 is a character, it
follows easily that there exists d € {1,...,k} such that

[(x+d) —(x)] < —

for every x € Zy. Therefore, if P is an arithmetic progression of length at most r and
common difference d, then diam ¢ (P) < 27r/k by the triangle inequality. Let r = ek/2m.

Now partition {0,1,..., N —1} into residue classes modulo d. Since d < k, each of these
has size at least N/2k. It is easy to see that such a set can be partitioned into arithmetic
progressions P; of common difference d and lengths between r/2 and r.

We are therefore done since r/2 > ev/N /8. O

Now we will prove Theorem 2.1.
Let A C [N] have density 0. We set B = C = AN[N/3,2N/3] and consider two cases.
Case 1. If |B| < 6N/6 then either

an 1525
or
an 5] = 2

So there exists a subinterval of [N] of length at least N/6 in which A has density at least
5 /4.

Case 2. Now suppose |B| = |C| > 0N/6. We first ensure that N is odd by passing to
N’ = N — 1 if necessary. Then the density of A in [N'] is 6’ > § — 1/N. Note that in
particular, §' > §/2 provided N > 1. The observation at the beginning of the section
divides this case into two subcases.
Case 2A. If

1660 &3

Boyy=2y A(x)B(y)C(2) > afy/2 = 2266 144

then we have an arithmetic progression of length 3 modulo N in A x B x C provided
that 6%/144 > 1/N. This is a genuine arithmetic progression in [N] as B and C lie in
the middle third.

Case 2B. Otherwise, there exists an r # 0 such that
; V2 165 42
) = DTS 100
2 226 24
Let ¢: x — w'™. By Lemma 2.2, we can partition Z/N'Z into arithmetic progres-
sions P, ..., P, all of cardinality at least (§2/48)v/N’/8z > 6*v/N /5007 such that
diam ¢ (P;) < §2/48 for every i.

Let f(z) = A(z) — &' be the balanced function of A. Note that f(r) = A(r) as r # 0
and so 1 is non-trivial. For each 7, let x; be some element of P;. Then

52 . p
o1 S 1AW= 1£(r)] = [Ep f(z)w™]



= \Zym Eeep, f(2)0(2)]
< Z\PZ-HExea f@)p(z)|.

But
[Exep, f(2)Y(2)] < [Egep, f(2)Y(i)] + [Exep, f()(¥(2:) — ¢ ()]
62
= “EIGPi f(x)’ + ZS
Therefore,

52
;!Pi\\ExePif(fﬂ)! =Y

But Y,/ P;| Ever, f(x) = 0 50
52

S|P (Eser, f@)] + Exer, f(2) > T

It follows that E,ep, f(z) > 62/96 for some i. Therefore,

ANPB|_ ., & 5?
— >0+ — >0+ —
B ~° o6~ 100

provided 82N > 2400.

The proof is basically over. From now on, we argue slightly less formal. We have
shown that if A does not contain an arithmetic progression of length 3 then there is a
subprogression P of cardinality at least 62/ N /5000, inside which A has density at least
§402/100. Aslong as 68N > (5000)*, this implies | P| > N'/4. This leads to an iteration
Ay C [No), A1 C [NV1],... and our assumptions continue to be valid if §% Ny, > (5000)%.

Since N > N/4" and as we cannot have more than

100, 100 100 200
) 26 49 1)

steps, the theorem is proved if

L2006 (5000)*
N/ =

This is implied by

200

1 pAcA%
(7) ® log N > 410g 5000 — 8log §

4
200
= - 5 log4 + loglog N > log(41log 5000 — 8log d)
2
<~ loglog N > % log 4 + log(41og 5000 — 8log d)
4
<= loglog N > % + 36 + ?

It suffices to assume §loglog N > 500, which is of the required form. O






Chapter 3

Quadratic Recurrence

Notation. e(z) means 2™ ||z|| means the distance from z to the nearest integer, (z)

means the residue class modulo 1 of z that lies in (—31, 1]. Hence [|z[| = [(z)].

In the previous section, we essentially proved the following result: if « € R and k € N
then there exists d € {1,2,...,k} such that

2
d) —1| < —
e(ad) — 1] < =

by the pigeonhole principle. Now we shall prove a much deeper result of a similar kind.

Theorem 3.1. For every € > 0 there exists k£ such that for every a € R there exists
de{1,...,k} such that
le(ad?) — 1| < e.

Proof. By Roth’s theorem, there exists k such that any subset A C {1,...,k} of size at See A.3.1.
least €k/(8m) contains an arithmetic progression of length 3.

Partition the unit circle into at most 87 /¢ sets of diameter at most €/2. Then there must See A.3.2
be a set A C {1,...,k} of density at least ¢/(87) such that, for every z € A, e(az?/2) and A.3.3.
lies in the same one of these sets. Inside A we can find x — d, z, z + d with d # 0. Thus,

rewriting e(ad?) as

a

e(ad®) = e (5 (2= d)* = 22* + (x + d)?) )

() () (52 ()

we see that this is within /2 +¢/2 = ¢ of 1. O

If one checks, one finds that k can be taken to be ¢, We shall now obtain a much
better bound. We shall investigate sums of the form

k—1

and derive Weyl’s inequality. A useful trick is to look instead at

k—1 1k-1

k—
‘Z ‘ Z a(z? —y?) Z e(auv)

=0 =0 y=0 (u,v)eW



See A.3.4.
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where u = z +y, v = © —y. Here, u ranges from 0 to 2(k — 1). If u < k — 1 then the
possible pairs (z,y) with x + y = u are (0,u), (1,u —1),...,(u,0), so possible values of

v are —u,2 —u,4 —u,...,u, so the first part of the sum has modulus
k=1 wu k=1 wu
‘Z Z e(au(2w — u))‘ < Z‘ Z 6(20[1“0)‘
u=0 w=0 u=0 w=0

since |e(au?)| = 1. If u > k then the possible pairs (x,y) are
(u—k+1LEk-1),(u—k+2k—=2),...;(k—1Lu—k+1)
so the possible values of v are
u—2k—-1),u—2(k—-2),...,2(k—1) —
Thus, the second part of the sum is

2(k—1) 2(k—1)—u

Z Z e(au(u —2(k — 1) + 2w))

and its modulus is at most
2(k—1) )fu

Z ) 2auw)’

Lemma 3.2. Suppose ||a|| # 0. Then

t—1

Therefore,

since we also know that .
tf
‘Z e(aw)‘ <t.
w=0

Lemma 3.3. Let € R and let p, ¢ be integers with (p,q) < 2 such that
2
o= 2] < 2

Suppose t is an integer with 1 <t < g/4. Then

1
lat]| > —.
2q
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Proof. By the triangle inequality and as tp/q & Z, See A.3.5.

p 1 2 q 1
et = [2s oDy - (o223 23

Assuming o € R and p, ¢ are coprime integers such that |a — p/q| < 1/¢? then let us See A.3.6.

estimate the sum
v+[q/4] 1
in<k, — 5.
2 “““{ ’%BauH}

U=v

Now |2a—2p/q| < 2/q¢? so 2a satisfies the hypothesis of Lemma 3.3. Therefore, the sum
is bounded from above by

2q
k+2¢+—+--+ <k +4qloggq.
2 la/4] /4J
It follows that, provided 16k > g,
2(k—1)
1 16k
Z min{ } g —(k +4qlogq).
2 22au] f = g

This gives us the next result.'

Theorem 3.4 (Weyl’s Inequality). Let a € R, let (p,¢) = 1 and suppose that |a—p/q| <

1/¢%. Then
k-1

’Z e(axz)‘ < il/l; +8/klogg.

=0

Now let us tackle Theorem 3.1. So we let ¢ > 0, and consider k£ € N and a = a/N for
integers a, N. We first establish another lemma.

Lemma 3.5. Let A C Zy, |A| = « the density. Let 0 < ¢ < 1 and suppose AN
[~eN,eN] = ). Then there exists 7 such that 0 < |r| < 8/¢? and |A(r)| > ca/16.

Proof. Let I = [-eN/2,eN/2]. Then if z,y € I then x —y ¢ A. It follows that See A.3.7
(A, Ix—1I)=0,s0 (A, |I*) = 0. Hence and A.3.8.
N 2 2 OZEQ
STIACNIE)? = JAOIFO)P > -
r#0

But if |A(r)| < ea/16 whenever 0 < |r| < 8/¢? then the left-hand side is less than
e} 5 .
?Z’I(T)FJF > all(n)).
T |r|>8/e2
But See A.3.9.

D )P =111 < 2

so the first term is at most ae?/8. Also, See A.3.10.
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1

()] <
2N|| %l

since NI(r) is a sum of a geometric progression with common ratio e(r/N), which is
See A.3.11. equal to 1/2|r|. Therefore,

. « 3ae? 3ae?
> allmf=2 3 5 <) =T

[r|>8/e2 r>8/e2

But this is a contradiction. O

Now let A = {a,4a,9a,...,k*a} C Zy. We would like to prove that AN [—eN,eN] # ()
unless ¢ is very small (as a function of k). So suppose AN [—eN,eN] = (. Then

. 1 e e 1o
A(r) = N Zwm = Zw‘”y =~ Ze(arzﬂ).

€A y=1 y=1

The previous lemma implies that there exists r < 8/¢2 such that

k
1 |Ale ke
N‘Z:: ary’ ‘— 16 16N
SO
s
s =T

See A.3.12. Observe that, by the pigeonhole principle on the circle, there exist p and ¢ with 1 < ¢ < k
and (p,q) = 1 such that

We now introduce a positive real parameter () to be determined later, which we use to
distinguish two cases. If ¢ < @ then
jar?q? —rpg| < 7L < b8
kE — &2k
If ar?q® € A, which is the case provided 1 < rq < k, then from our assumption A N
[—eN,eN] = () we have that

e < 8Q
= 2%
so e3 < 8Q/k. Otherwise, if 7q > k then
8
—g >rqg>k
€

so €2 < 8Q/k. Provided Q < k/8, we conclude from these two bounds that €3 < 8Q/k.

Now assume ¢ > (). In this case, we shall use Fourier analysis. We would like to apply
Weyl’s inequality to obtain

k 32k
‘Ze ary? ’ oI

Tn our later application of Weyl’s inequality we will even have g < k.
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For this, it suffices to have

4k 32k
" < =
\/q+8\/klogq 9

which is guaranteed if Q < 12k/logk. This gives /16 < 32/Q/?, i.e., ¢ < 512/Q/2.

Combining our requirements on the parameter ¢) from both cases

512 2QY3
QL/2 Y

gives 256k1/% = Q%6 ie., Q = 256%°k%/°. Note this also satisfies the requirements
Q < k/8 and Q < 12k/logk for sufficiently large k. So this choice of @ shows that
e < Ck~1/5 for some constant C.

This shows that if k& > C°¢~® then the intersection A N [—eN,&N] is non-empty. That
is, there exists d € {1,...,k} such that ad® € [-eN,eN] modulo N, so there exists an
integer A such that

lad*> — AN| < eN
SO
lad?|| < |ad® — )\ <e.

This proves Theorem 3.1 O

Theorem 3.6. Let ¢ be a function z +— ax? + Bz + v and let (z) = e(q(x)). Let
P be an arithmetic progression of length m. Then, for all ¢ > 0, P can be parti-

tioned into arithmetic progressions P; of length at least ¢(e)m!/40, for each of which has
diamy(P;) < e.

Proof. By the previous result we can find d < m'/2 such that ||ad?|| < Cm~1/10.

Now q(z +rd) — q(z) = a(2rdx + r?d?) + Brd differs modulo 1 from 2ardz + Brd by at
most Cr2m =110, As long as r < ¢(¢)/2C~1/2m1/20 this is at most /8.

Therefore, we can approximate e(a(2rdz +r2d?) + frd) = (x + rd)y(z) by e(2ardz +
frd) with an error of at most £/4. Partition P into progressions @Q; of common difference
d and length at least C’m'/29. On each one of these, ¥(z+rd)y)(z) can be approximated
to within £/4 by a function of the form e(fr 4+ ¢’) and therefore it be partitioned into
subprogressions of length at least C"m*0 on which ¢ is constant to within e (see
Section 2). O

See A.3.13.

See A.3.14.






Chapter 4

Quadratic Uniformity

Lemma 4.1. Let G be a finite Abelian group and let f: G — C. Then

() 1714 = 1 % F13 = Evap f@)F@ T a)f@ + 5)f(x+a+b),
(i) if [|flloo < 1 then [ fI%, < 1714 < 7%

Proof. For the first part,

||f||4—2|f 2 = F f ) =|If * fII3

= Ey+z:u+v ( ) (Z)f( ) ( )
:Em,a,bf( ) (‘T—f—a’)f( ) (SU—I—(IL-f-b)

wherey -z, u > x+a,v—>2x+b, 2 —x+a+b.

For the second part, obviously || f||% < ||f]|4, and also

HfH4—Z\f |4<maX\f ¥)? Z\f
:HfHoonH2§HfHoonH2 sufuio- O

For practical purposes, || f|ls and || f]l4 are equivalent.

Lemma 4.2. Let f: G — C, f(z) = § + g(x) where § is a constant and E, g(x) = 0,
that is, 6 = E, f(x). Then

(1)

Epap f(2)f(x+a)f(z+b)f(x+a+b)
=10]* + Egap 9(x)g(x + a)g(x + b)g(z + a +b),

(ii)
Eoa f(2)f(z 4+ d) f(x + 2d) = 6° + Ey g g(x)g(z + d)g(z + 2d).

Proof. For the first part, the left-hand side is

Eoab(0+9(2))(0 + g(x +a))(0 +g(z +))(6 + g(z + a+b)),
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which can be expanded into 16 terms. Two of these terms are [§]* and
Ezapg(z)g(x + a)g(x + b)g(xz + a + b) and all the others are zero. For example,

Euab9(2)0g(x 4+ a)g(z + a+b) = Egy - g(2)dg(y)g(z) = 0.

For the second part, the argument is similar. O

Proposition 4.3. Let G be a finite Abelian group of odd order, and let A C G, |A| = ¢.
Suppose that
Erap A)A(z +a)A(z +b)A(x +a+b) <& +c.
Then
Epq A(x)A(z + d)A(z + 2d) — 63| < /2.

Proof. Let A(z) = § + g(z). Then the left-hand side of the first inequality equals
6% +1|g * g||3 by the previous two lemmas. The left-hand side of the second inequality is
Beag(x)g(z+ d)g(a + 2d)[ = (g5 g, 92) < llg = gll2llg2ll2 < [lg * gll2- 0

Definition. Let X, Y and Z be finite sets and let f: X x Y x Z — C. Then we define
”f”Us by

HfH8U3 = Ex,x’ Ey,y’ Ez,z’ f(x’y’ Z)f(x,y, Z/) te f(xlay/) Z/)'
We also define
[an fla B af7] = ]Ex,a:’,y,y’,z,z’ fO(xa Y, Z)fl(ajvya Z/) e f7(x,ay/7 ZI)‘

Proposition 4.4. Let X,Y, Z be finite sets, and let fy,..., fr be functions from X x
Y x Z to C. Then

[fo, - frl < W follus -+ [ frlls-
Proof. We use the Cauchy—Schwarz inequality to transform the left-hand side,

]E:v,z/ IEy,y’ Ez,z’ fO(%?h Z)fl(xa Y, z’)fg(x,y’, Z)f3($,y/, z/)
f4($layaz)f5(x,aya Z,)fﬁ(l',,y/,Z)f7($/,y/,Zl)

< (Ey,y’ Ez,z”Ex fO(xvyv Z)fl(x7y7 Z’)fg(flf,y/, Z)f3($, ylv ZI)F)
% (Byy Be | Bar [y, 2) (@, ) Jo ooy, 2) (o, 20 2
= [fo, f1, 2, 3, fos f1s o, 312 fas fss foo frs fas f5, oo f2) /2

Applying the same argument to the y and z variables we end up with the result stated.
O

1/2

1/2

Corollary 4.5. ||-||y, is a norm on CX*¥Y*Z,

Proof. Let fo, fi: X XY x Z — C. Then
Ifo+ filll, = [fo+ fu.. - fo+ f1]

= Z [fGO?"'?fE?]

€€{0,1}8

< Z Hf€0||U3 T ||f67||U3

e€{0,1}8
(1 ollors + [1f1lles)® O
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Definition. Let G be a finite group and let f: G — C. Then

1£1ITy = Eaape f(2)f(@+a)f(z+b)f(z+a+Db)
flx+o)f(x+a+c)f(x+b+c)f(x+a+b+ec).

Lemma 4.6. Let a,b, ¢ be integers and let G be a group such that the order of every
g € G is coprime to all of a,b,c. Let f: G — C and define F: G*> — C by

F(QU, Y, Z) = f(ax + by + CZ)-
Then || F|lu; = || flus-

Proof.

||FH?]3 =Ey 2y 22 flax + by + cz) fax + by + c2’) f(ax + by + cz)
flax + by + c2')flax’ + by + c2) f(ax’ + by + c2’)
flax’ + by + c2) f(ax’ + by + c2').

Now substitute ax + by + cz — X, a(2/ —x) — A, b(y' —y) — B, ¢(2' — 2z) — C. Then
this becomes

Exapc [(X)f(X+C)f(X+B)f(X+B+C)
JX+AfX+A+C)f(X+A+B)f(X+A+B+0).

It is not hard to check that the map (z,2’,v,v',2,2') — (X, A4,B,C) is |G]* to 1. [

Corollary 4.7. |||, is a norm on CC.

Proof. Let f,g: G — C. Let F,G: G® — C be defined by F(z,y,2) = f(z +y + 2),
G(z,y,2) = g(x +y+ 2). Then (F+G)(z,y,2) = (f +9)(x +y+2). So

If + gllvs = 1F + Gllos < [Fllos + 1Gllos = [ Fllus + [lgllus- -

Lemma 4.8. Let X, Y, Z and W be finite sets, and let f: X xY x Z — C, g: X X
YXW —->C,h: X xZxW —-Cand k:Y x Zx W — C be functions. Suppose that
[1fllocs lgllocs 1Alloos [[Elloo < 1. Then

|Ex,y,Z,w f(l'a Y, Z)g($, Y, ’Uj)h(l‘, Z, w)k(ya 2, w)‘
< min{|| fllus, lgllus, [|Rllus, |kl }-

Proof. We repeatedly apply the Cauchy—Schwarz inequality,
LHS® = ’Ey,z,w k(y, 2, w) E, f(-% Y, z)g(x, Y, w)h(:r, 2, w)‘S

S ((Ey,z,w|k(ya 2, w)‘2) (Ey,z,w’Er f(xa Y, Z)g($, Y, ’U))h(.’L', Z, ’IU)’2))
< (Ez,a;’ Ey,z,w fw,x’ (y7 Z)gx,ac’ (y, w)h:c,:v’ (Z, w))4

4

where f; ./(y, ) is shorthand for f(z,y, 2)f(2',y, 2) etc.

< E:}c,x’ |Ey,z,w f:}c,x’ (ya Z)g:r,x’ (y, w)hz,:p’(za ’LU) ’4
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2
< Eowr (Bew|Ey fow (U 2)gaw (v, w0)]?)

2
=Ky (Ey,y’ Ezw fou yy (2) 92y (w))

where fx,x’,y,y’ (Z) = fa},z’(yv Z)fz,x’ (y’, Z),

<Eurw gy Bz frayy (2)9za gy (W) ’2
<Eioyy EwlE: four yy (2) |2

_ 8
= 17112,
The same works for the other three functions, so the result is proved. O

Corollary 4.9. Let G be a group such that no element has order divisible by 2 or 3.
Let f,9,h,k: G — C with [[f]leo, l|glloc, [1Allo, |Flloo < 1. Then

Eeq f(z)g(x + d)h(x + 2d)k(x + 3d)| < min{||f||vs, [lgllvs, 1Allus, [Fllvs}-
Proof. The left-hand side can be written as
Bz, f(—=y — 22 = 3w)g(z — 2 — 2w)h(2z + y — w)k(3z + 2y + 2|
By Lemma 4.8 and Lemma 4.6, this is at most

min{|| (|, lgllus, 1Allos, [[kllos }
as claimed. O

Definition. Let G be a finite Abelian group and let f: G — C be a function with
[flloc < 1. Then f is c-quadratically uniform if || f||f;, < c. Let A C G be a subset of
density 0. Then A is c-quadratically uniform if the function f4 = A—4J is c-quadratically
uniform.

Corollary 4.10. Let A, B,C,D C GG, where G is a group with no elements of order 2
or 3, be sets of density «, 3,7, §, respectively. Suppose that A and B are c-quadratically
uniform. Then

E,q A(z)B(z + d)C(x + 2d)D(z + 3d) > afyd — 58,
Proof. The left-hand side can be written as

Eea(a+ fa(2)(B+ fe(x+ d) (v + fe(z 4 2d))(6 + fp(z + 3d)).

There are 16 terms. The main term is a3yd. Any other term is zero unless you choose
f from at least 3 brackets. These terms involve either f4 or fp, and therefore, by
Corollary 4.9, each have magnitude at most ¢!/8. There are 5 such terms. O



Chapter 5

Functions and Sets that are not Quadratically Uniform

Notation. Let f: G — C and let & € GG. Then define
A(f;k): G—C,z— f(x)f(z — k).
Proposition 5.1. Let f: G — C be a function such that || f|lcc < 1. Then the following

are equivalent.
(i) f is not cj-quadratically uniform.
(i) Erec Y yec| AU K @)[* > o
(ifi) Ereo max, g A(fi k) (0)]" > ca. A
(iv) There exist B C G with |B| > ¢3 and ¢: B — G such that
AR @ED[ > e

for every k € B.

Proof. We have that

1£12 = Evap £ (@) f(@ +a) f(w +b) f(z +a+b)
fla=k)f(x—k+a)f(xr—k+b)f(x —k+a+)
=Ko kap AU ) (@) AS; B) (2 + a)A(fi k) (2 + D)A(f; k) (z + a + b)
= ErllA(f5 F) 1

=Er YA k) ()]
P

using Lemma 4.1. Thus (i) < (ii).
Also,

Ee D AR (@)]' < Brmax| A k) @) DAL R @)
Y ¥
< Bemax] A(f5k) ()]

since |A(f;k)||3 < 1. Thus, (ii) implies (iii) with ¢z = ¢;.

If (iii) holds then there must be a set B of density greater than cg/2 such that
maxy|A(f; k) (1)]? > c2/2 for every k € B. For each k € B, let 1(k) be a ¢ where the
maximum is attained.
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If (iv) holds then

Erec D |A(fi k) ()" > Erea BU)|AS; k) (0(k)[* > o, O
PeG

Lemma 5.2. Let A: G x G — C be a function. Let f: G — C be a function such that
| flloc < 1. Then

[Erea 3 Ak A @] < I,
ved

where [|A[|{;, means

By +ha=ks+ks > Ak, ) A(ka, o) A(ks, ) Ak, tha).
Y1t+pe=1P3+iba

In particular, if B C G and ¢: B — G is such that
. 2
Ey, B(k)|A(f; k) (¥(k)|” > ¢

then there are at least ¢*|G|® quadruples k1 +ko = k3 +k4 in B such that (k1) +(ks) =
Y (k3) + ¥ (kq). This follows from applying the lemma to

)\(k,w):{l keB. =1k

0 otherwise
Proof. The left-hand side can be written as

]Ekzx 0)[Eey f@)F (e = BT @)Fy — kb(a — )|

\Esz Evo f (2)T(@ = R)J (@ = ) f(a —u — K)u(u)

)4

wa F@)f@ —u) By flz — k) f(x —u—k) D Ak, ¥)(u)
P
<IEJ E,

2
flo—k)f(x —u— Z Ak, )y ‘ )
by Cauchy-Schwarz and ||f|lec < 1. Let fu(s) = f(s)f(s — u), gu(s) = dop A )Y (u).
Then this is

2 2
_ <Eu E, (z — k)gu(k)‘ >
= (BuEalfu * gu(2))?)”

(e SWABEAE )
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by Parseval and the convolution identity
R 1/2 1/2\ 2
< (E (Sihor) (T )
¢ ¢

using Cauchy—Schwarz. But Au L= fllE < 4 <1, so this is at most
g Yy 1) Uz

(E (Z <¢>|4>1/2>2
< | E, Ju
¢
<Bu Y |gu(e)]*
o}

=EyEzy top=a5+a4 Z @1, 1) M (@2, Y2) M3, Y3) A (24, 14)
U1,2,93,4
x 1 (w)ho(u)ihs(u)pa(u)

=By paomastas D M@, ) M2, ¥2)A(ws, ds) Mxa, ). O
p1ypa=1h3v4

This makes us interested in the following question. Let G be a finite Abelian group,
B < G, |B] = 38, ¥: B — H, where H is some other Abelian group, and suppose
there are at least ¢|G|®> quadruples (z,y,2z,w) € B* such that z + y = 2 + w and
(x) +Y(y) = ¥(z) + ¥ (w). What can we say about ¢? Our main case of interest will
be G = H =7Zy.

Lemma 5.3. Let G be a bipartite graph with finite vertex sets X, Y and density §. Then
X has a subset X’ of density at least 56° such that at least 12|X'|? pairs (z,2') € X' x X'
have neighbourhoods that intersect in a set of density at least %62.

Proof. Let us write d(z) for the density of the neighbourhood I'(z) of x and d(z, z") for
the density of I'(x) NT'(2’). Let y1,...,ys5 be chosen independently at random from Y
and set

X' =T(y1)N---NT(ys) = {z : zy; is an edge for i = 1,...,5}.

Note for all x € X we have P(x € X') = d(z)°, and for each (z,2') € X x X the
probability that (z,2') € X’ x X" is d(z,2")?. So the expected density of X' is E, d(z)°
and so the expectation of the square of the density of X’ is at least

(Erd(2)?)? > (B, d(2))"° = 6
by Holder’s inequality.
Call a pair (z,2') € X x X bad if d(z,2') < 36°. Let (z,2’) be a bad pair. Then

1
Pl(z,2") € X' x X'] < —=o'°.
32
So the expected density of bad pairs in X’ x X', i.e., the number of bad pairs in X’ x X’
divided by |X|?, is less than 350'0. Therefore,

510 (510

E [|X']> — 16 x (bad pair in X" x X’ density)] > 6'° — 5 5
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In particular, there exist a choice of y1,...,ys such that the proportion of bad pairs in
X' x X' is at most 1= and |X'|? > 261, hence | X'| > $6°. O

Definition. Let G be a bipartite graph with finite vertex sets X and Y, let m be an
even integer, and let x,2’ € X. Then the path density d,(z, ') is the number of paths
in G of length m from z to 2’/ divided by | X |™/>~ 1y |™/2.

Equivalently, it is the probability that zyixays. .. ym/Qx' is a path in G if g, ..., 2,9,
Y1,- -+, Ym/2 are chosen randomly.

Corollary 5.4. Let GG be a bipartite graph with finite vertex sets X and Y and density
§. Then X has a subset X" of density at least $6° such that dy(z,2’) > {56° for every
z, 7 € X",

Proof. Let X’ be given by Lemma 5.3. So |X'| > 46° and dao(z,2’) > 162 for at least
22 X’|? pairs in X' x X

Define a graph H with vertex set X’ by joining z to 2’ if dy(z,z’) > %52. Then the
average degree is at least 12| X’|.

So at least half the vertices have degree at least £|X'|. Let X” be the set of all such
vertices. If #, 2’ € X" then there must be at least 2|X’| vertices z such that da(z,2) >
%52 and da(z,2') > %52. This implies that d4(z,z") > %%55%52%52 > 1—1659. O

Theorem 5.5 (Balog-Szemerédi). Let I" be an Abelian group and let A be a finite
subset of I'. Let |A| = n, and suppose A* contains at least en® quadruples (a,b,c,d)
such that a — b = ¢ — d. Then there is a subset B C A of cardinality at least ¢'n such
that |B — B| < Cn. Here, ¢/ and C depend only on cand B— B ={x —y: z,y € B}.

Proof. For each x € I" let f(z) be the number of ways of writing = as a—b with a,b € A,
i.e., f(x) is proportional to A x (—A)(z). Then f(z) > fcn for at least Fcn values of z,

since, by hypothesis, Z
f(z)? > en?
€T

and otherwise we would have

3
cn 3

3
;f(x)z <m§xf<x>2-?+cg‘§xjf<x> <+ o

Define a bipartite graph G with vertex sets A and A, by joining a to b if f(b—a) > %cn.
We call this the popular difference graph. Then the number of edges in G is at least

ichQ, so G has density at least %62.

By Corollary 5.4 we can find B C A such that d4(x,2') > 2%018 for every z, 2’ € B and
10

1B > g4,

Let z € B — B. Then we can write z = by — by with by, by € B. But dy(b1,by) > 53¢,
so the number of triples uy, uo, ug such that

da(b1,ur), do(u1, ug), do(uz, ug), da(us, ba) >

N o

. : . 4
is at least 2%618725. For each choice of wuq,uo,ug there are at least (%cn) ways of

Writingbl—ulzal—ag, Ul — U2 = a3 — a4, U2 — U3 = a5 — aep, U3—b2:a7—ag
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: N 4 . .
with a1,...,ag € A. This gives us 2%2 018n3(2cn) = Q%CQQM distinct ways of writing
r=a; —as+az—a4+as—ag+ay —ag with a1,...,ag € A.

Different € B — B must produce different (ay,...,as) so
L 9o 7_ 3
|B — B|%c n' <n
and hence
|B — B| < 2%¢%n,
Note we have found |B| > 51zc!%n. O

Lemma 5.6 (Ruzsa Triangle Inequality). Let U, V,W be finite subsets of an Abelian
group. Then
UV -W|<|U-V|U-W|.

Proof. Define functions v: V — W — V and w: V — W — W in such a way that
v(z) —w(x) = x for every x € V — W. Then define a function ¢: U x (V — W) —
(U-V)x (U—-W)by ¢: (u,z) — (u—v(x),u —w(x)). This is an injection since

(v —w(z)) = (u—v(z)) =v(@) -wk) ==

so we can recover x, and hence v(x) and w(x), and hence u, all from (u—v(x),u—w(x)) =
¢(u, ). O
<

Lemma 5.7. Let I' be an Abelian group and let A be a finite subset such that |A— A| <
C|A|. Then |24 — 24| < 8CY|A].

It is known that |kA — [A| < C*HYA].

Proof. Let f(x) be the number of ways of writing x = a — b with a,b € A, which is
proportional to A« —A(z). Then

A
>
for at least |A|/2 values of z, or else we would have
2 Al |A! \A| 2
42 =Y @) < B p@) 414 - Al < Elhap ol = ap

zel

contradiction. Let

S = {x:f(x) > 2@}

|A— A+ S| <2034

To show this, we shall define a (multi-valued) map from A— A+ S to (A—A)x (A—A)
as follows. For each x = a1 — ag + s, we can write s as ag — aq in at least |A|/2C ways,
and send it to (a1 — a4, a2 — a3). Each of those images of x is distinct, and from it we
can recover © = (a1 — a4) — (az — a3). It follows that

We claim that

|A’|A A+ S| <|A—- A2 <C?A)?
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which proves the claim.

By the Ruzsa triangle inequality,
|S||2A — 24| < |A— A+ S)?
since this is
IS[I(A=A) = (A-A)|<[S—(A-A)[|S - (A-A4)].

Thus
4C°| A2

24 —2A| < ———
| = T

= 8C%| Al O

Definition. Let A be a subset of an Abelian group and let B be another one. A function
¢: A — B is a (Freiman) homomorphism of order k if

r1t T =914+ Yk
= o)+ o) = dy) + -+ dlyk)-

It is an #somorphism if it is a bijective homomorphism and the above implication can
be reversed.

Lemma 5.8. If ¢ is a Freiman homomorphism from a set A to a set B then ¢ induces
a well-defined map ¢: A — A — B — B with formula ¢)(z —y) = ¢(x) — ¢(y). More
generally, if ¢ is a homomorphism of order 2k then we can define ¢: kA—kA — kB—kB
by

V(@14 rpg =y — o —yp) = o) + o+ dlaw) — olyr) — - — d(yk)-

Also, a homomorphism of order 2k on A induces a homomorphism of order £k on A — A.

Proof. These statements are all easy exercises. We prove the third one. If p: A — Bisa
homomorphism of order 2k and we define »: A— A — B — B by ¢(z—y) = ¢(x) — ¢(y)
then

Ty =Y+t T —Yp=UL — V1 + UL — Uk
= ozt taptvi bt =y YU o+
= ¢(@1) + -+ d(wp) + d(v1) + -+ - + d(ur)
=oy1) + -+ ¢(yk) + d(wa) + -+ + d(uk)
= U)o Ol — ) = U — o)+ (=) O

Lemma 5.9. Let A C G, |[A — A| < C|A|. Then

|94 — 8A| < 2*C*®|A.

Proof. By Ruzsa’s triangle inequality,
[Al|(2F +1)A — 2% + D) A| = |A]| (2" +1)4 — 281 4)
— (@t +1)A—214)]
<@t A -2t 1A
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if £ > 1. Therefore,

94 — 94 <|2A — 24
<

® 6\8
A A )5(80)

by Lemma 5.7. Therefore,
|94 — 8A| < (8C%)®|A,

as in general |A + B| > |A|. O

Lemma 5.10. Let B be a subset of Zy and let ¢: B — Zy. Let T be the graph of
¢. Suppose that [9T' — 8T'| < K|T'|, viewing I" as a group with (z, ¢(x)) — (y,¢(y)) =
(x —y,¢(x) — &(y)). Then there is a subset B’ C B of cardinality at least |B|/16K such
that the restriction of ¢ to B’ is a Freiman homomorphism of order 8.

Proof. Let B’ C B. If the result is false for B’, then we can find x1,...,xg and y1,...,ys
in B’ such that

$1++x8:y1++y8
but

P(x1) + -+ P(as) # ¢(y1) + -+ + d(ys)-

Let Y be the set of all ¢(x1) + - - -+ ¢(x8) — d(y1) — - - - — (yg) such that x1,..., x5 and
Y1,--.,Yys are in B and satisfy

$1++x8:y1++y8
Then {0} x Y C 8' — 8I'. Therefore,

I+ ({0} xY) C 9T — 8T

But
T+ ({0} x Y)| = [T[[Y]
and
|9 — 8T'| < K|T'|
so |Y| < K.

Let P ={1,...,m}, and let r # 0 and s be random elements of Zy. Choose B’ randomly
to be

{reB:¢(x)er-P+s}
where
r-P+s={r+s2r+s,...,mr+s}.
If8(r-P+s)—8(r-P+s)NY = {0} then ¢|p is a homomorphism of order 8. But

8(r-P+s)—8(r-P+s)=8r-P—8-PCYN[-8m—1),8(m—1)]
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so each non-zero element of Y has probability at most

16(m — 1) - 16m
N-1 — N~
Therefore, as long as 16m(|Y'|—1)/N < 1 the intersection is {0} with positive probability.
So choose m = [N/16K |, and pick r such that the intersection is {0}. Now choose s
such that
|B|

B|>|B|- 2> 121
‘ ‘_’ | N 7 16K

which is possible by an easy averaging argument. O



Chapter 6

Bohr Neighbourhoods

Let G be a finite Abelian group. Let 1, ...,y be characters, let K = {t¢1,...,9} and
let § > 0. The Bohr set B(K,J) is defined to be

{reG:|i(x)—1<dfori=1,...,k}.
We call £ the dimension of the Bohr set and § is the radius.

Lemma 6.1. The density of B(K, ) is at least (§/27)*.
Proof. Let Tl = {z € C:|z| = 1}. Pick z = (¢!1,...,¢"%) at random in TT* and look at
U,={z€G:0; <argy;(z) < 0; + 6 for all i}.

Then the probability that = € U, is (6/27)* so we can find z such that U, has density
at least (§/2m)¥. But then if z,y € U, then 1;(z — ) has argument between —d/27 and
§/2m so |[i(z —y) — 1| < 6. So U, — U, C B(K,$6), so |B(K,d)| > (§/2m)*. O

Corollary 6.2. The Bohr set B(K,d) in Zy contains an arithmetic progression of length
cON/IKI,

Proof. By Lemma 6.1,

B> ()"

So as long as that is greater than N~!, B(K,n) contains a non-zero element z. By the
triangle inequality, rx € B(K,|r|n) as

[Wi(re) = 1] < [¢i(rz) = ¢i((r = V)| + -+ [Yi(x) — 1] < rfi(x) —1].

So if 0 < r < d/n then the progression {—rz, —(r — 1)z,..., (r — 1)x,rx} is a subset of
B(K,6). But for (n/2m)!%l > N=1 we need n > 2rN~V/IXl 5o this gives a progression
of length at least %5]\71/'[{'. O

Lemma 6.3 (Bogolyubov’s Method). Let G be a finite Abelian group and let A C G
be a set of density §. Then 24 — 2A contains a Bohr set B(K,+/2) with |K| < 2.

Proof. For each x € G, let f(z) = A% Ax (—A)* (—A)(x), which is proportional to the
number of ways of writing x = a1 + ag — ag — aq with a; € A. Then f(x) # 0 if and only
if v € 24 — 2A.
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Also, by the convolution and inversion formulae
= > _JAW)["(x
P
Let K = {1 : |A(x))| > 6%/2}. Then

FPIKI< Y JAW)P = |Al3 =6

so |K| <672 Now

F@) =1AO)+ Y [A@) @) + Y JAW) ()

YeK\{0} YEK

and |A(0)[* = 6%, If z € B(K,v/2) then |¢(z) — 1] < /2 for each 1) € K so Rip(z) >0
as |¢(z)| = 1. Therefore,

m( 5 \Awn‘*d}(x)) -
YeK\{0}

for x € B(K,V/2).

]Z\A Ere) ‘<maX|A \Z|A 2<6%.5=0t
YEK

Therefore, Rf(x) > 0, which implies f(x) # 0 and hence z € 24 — 2A. O



Chapter 7

Szemerédi’s Theorem for Progressions of Length 4

Lemma 7.1. Let f: Zy — C with ||f|lcc < 1 and let P be an arithmetic progression
modulo N. Suppose that

Erep|A(f; k) (20 + p)* > c.
Then for each © € Zy we can find a quadratic polynomial ¢, in such a way that
Esczy [Esepip (2 — s)w® ()] > ¢!
where ¢ depends polynomially on ¢, and w%(*) = ¢(g,(s)/N).

Proof. The left-hand side of the hypothesis equals

Erep Evy f(2)f(x = k) F(y) f(y — k)wPAHmEy)
=E;uErep f(2)f(x — k) f(z —u)f(x —u— k)w(”k-w)u‘

Now 2Xku = A2 — (z — k)2 — (z —w)? + (z — k — v)?) and pu = pu(z — (x — u)). So
this equals

EyuErep g1(2)g2(x — k)g3(z — u)ga(x — k — u)

where g1(z) = gs(z) = f(2)w T and go(z) = ga(z) = W f(x). On substituting
u = z+ v with z € Zy and v € P, this equals

E; . Egvep g1(2)g2(z — k)g3(z — 2 —v)ga(x — 2 — v — k).

Therefore, there exists z such that

¢ < |Ey Exver g1(2)g2(7 — k)gs(z — 2 —v)ga(z — 2 —v — k)|
< Ey|Egpep ho(x — k)hs(x — v)ha(x — v — k)|

where hy = g2, h3(z) = g3(x — z), and hy(x) = g4(xz — z). Thus there exists a z such
that

¢ < E|Expep ho(z — k)hg(z — v)ha(x — v — k)|

N2 —_—
=E, W“Ekﬂ)ezN Hg(k)Hg(U)Hf(k +v))|
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where H3 (k) = P(k)hao(x — k), H (v) = P(v)hs(x —v), Hf(s) = (P + P)(s)ha(x — s).

Hence

N2

= |p‘2E (Hy, H * HS)
N2 N =

= 1pps B D Hi (A () H3 (1)

T

N2 . R
|P‘2E maX\H4( MIH 2]l HS |2
N xT T
|P|2 E, max\H4( MWIHS 2] H3 |2

N
E, H
|P| max| 4( )|

Therefore, for each x we can pick r, so that

N
W E.|Es Hf (s)w™*| > ¢

N _ |P+P|

Eo|Esepsp ga(z — 2 — )™ > =

sep+p ha(z — s)w™* > ¢

2

E;|Eseptp f(x — 2 — S)WMz =9) +T”S| > g

el

Il:-CIHESGP—FP f(:L‘ — 5)(,‘))‘(4r 5)? +7’z+25| > 5

Since A(z — s)? 4 744 .5 is quadratic in s, we are done.

O]

Corollary 7.2. Under the assumptions of Lemma 7.1, we can find a collection of pro-
gressions P of size at least a|P|® with b and absolute constant and a = a(c) such that

xeP f( ) 80

Proof. Let Q = P + P. Then we have quadratics g, such that

E.|Escoq f(s)w? )] >

[\l e}

By an earlier lemma, we can partition each x — ) into progressions F; , of size at least

a(c)|Q|" such that diam wi=(Fiz) < +c for each P ;. So

Eo|Eseo—q f ()™ )]

SE:):Z| Fio| ’Eseow( Jwi s)’

Z | |£2T| ‘]Esepi,z f(S)qu(Si,z)‘

= Z|\@|

N)\O

Esep,, f(s) (qu(s) — qu(si@))‘
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where s; ;, is an arbitrary element of P; ,, and hence

Cc
<E:D Pl e, f(5)1+ <.

Q|
Also,
E, Z | ,g;(' seio 1(5) = By By f(5) = By f(5) = 0.
Therefore,
P; c
Z | . $| |ESEP7;’$ f(s)‘ =+ ]ESEPL;C f(S)) 2 n
Q| 4
so there exists x and ¢ such that
c
Eacri, J5)| + Eacr, f(5) > &
because ) ,|P; ;|/|Q| = 1 for every x. Hence
c
IESEP2 z f( ) g ]
Convention. ¢y, cs,... is a sequence of constants, each with a power-type dependence

on the previous one. Further, let c;l = Cj.

Theorem 7.3 (Szemerédi’s Theorem for Progressions of Length 4). For every § > 0
there exists N such that every subset A of {1,..., N} of density at least § contains an
arithmetic progression of length 4.

Proof.

(i)

(i) There exists ¢; depending with power-type on ¢ such that if A is ¢;-
quadratically uniform then A contains an arithmetic progression of length 4.

If A is non-c¢i-quadratically uniform, let f = A — 6. Then there exists B C Zy of
density at least ¢ and a function ¢: B — Zx such that |A(f; k) (¢(k))| > co for
every k € B.

There are at least c3N? quadruples  +y = z +w in B such that ¢(x) + ¢(y) =
¢(z) + d(w).

Let T' be the graph of ¢. Then T" has a subset I of size at least ¢4N such that
IT" —T'| < C4|T|.

Therefore, |9 — 8| < C5|IV].

I has a subset ', the graph of ¢|gr, such that ¢|g~ is a homomorphism of order
8 and B” has density at least cg.

There is a set K of size at most C7 = ch such that 2B"” — 2B"” contains the Bohr
neighbourhood B(K,/2).
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Szemerédi’s Theorem for Progressions of Length 4

(viii) B(K,+/2) contains a progression P of length at least 1—10NC7. Also, if @ is the

(x)

(xi)

function induced by ¢, that is,

Pla+b—c—d)=d(a) +¢(b) — d(c) — ¢(d)

whenever a, b, c,d € B”, then 1 is a homomorphism of order 2 on 2B” —2B"”, and
therefore, we can find A, p such that ¥ (z) = 2Az + p for every x € P. Moreover,
P is centred at 0, clearly 1(0) =0 so pu = 0.

Writing P = r[—m, m] for some r it follows that if 2,y € B” with [r~!(z —y)| <m
then

¢(x) = ¢(y) = o(x) + o(x) — () = d(y) = P(z —y) = 2A(x — y)

since x —y € P.
Letting @Q = [0, m] then we can find some translate R of Q such that |[B" N R| >

c| R| since the right-hand side is the average over all translates.

This gives us a translate R and A, u such that ¢(z) is defined and equals 2\x + p
for at least cg|R| values of x € R. This is because if 9 € B” N R then for all
x € B"NR,

¢(x) — ¢(z0) = 2A\(z — z0)
d(x) =2 x + ¢(x0) — 2A\10 = 2 + L.

But Lemma 7.1 applied to A — § then tells us that there exists some progression
S of size at least N such that |[AN S| > (cg + 0)|S|. To see that the hypotheses
hold, use the fact that |A(f; k)" (2Ak + )| > c2 for at least cg|R| values of R.

Hence, by a Roth-style iteration, the theorem is proved.

The bound that results is that a density of C1;(loglog N)™“10 is sufficient to guarantee
a progression of length 4. d



Appendix A

Annotations

This chapter contains various annotations to the original lecture notes, which I found
useful during revision in Lent term 2008. They range from stating and expanding the
obvious to explanations of special cases omitted in lectures. Some of this work is due to
Victor Falgas-Ravry and Paul Jefferys.

A.1 Annotations to Chapter 1

A.1.1 Lemma 1.1, Product of distinct characters

We claim that if ¢, x are distinct characters on a finite Abelian group G then ¢ = ¥y
is a non-trivial character.

It is clear that ¢ is a character. Suppose ¢ is trivial. Then for all g € G

(¥x)(g) =1
= ¥(g9) =x(9)""
= Y(g) =K@ H " =x(9)

as Z = z~ ! for all z € C on the unit circle.

A.1.2 Proposition 1.3, ® is a homomorphism

We claim that the map ®: G — G,z — 0, is a homomorphism.

Since 1) is a homomorphism we have

(2 +y)(¥) = bo1y(¢) = P(z +y) = V(@)Y (y) = 62(4)dy(¢)
= ®(2) (V)2 (y) ().

A.1.3 Proposition 1.3, G separates elements of GG

We claim that if z # y then there exists ¥ € G with () # ¥(y).

Suppose not. Let M be the |G| x |G| matrix with rows indexed by G and columns
indexed by G such that the entry at position (x, z) is x(z). By assumption, columns z
and y are identical and hence rank M < |G|, contradicting the linear independence of
characters.
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A.1.4 Note following Proposition 1.4, Ew\fl(v,/;)]z =E.|A(z)]?

We claim Y, [A(4)[* = E.|A(z)[%.

As a preliminary observation, recall that for z # y in G there exists ¢ € G with

bz —y) # 1, s0

Yo —y) =) (¢¥)(w—y) =dlx—y) > bz —y)
v v v

implying >, ¢ (z — y) = 0. Now

P
- EwyA(x)sz(x - Z/)
P
=B Al X AW Y v —v)
Yy %

as desired.

A.1.5 Theorem 1.5, Reformulation of claim

Let A C F3. We claim there exists {z,z + d,z + 2d} C A for some d # 0 if and only if
there exist x,y, z not all equal with x +y + z = 0.

Given x,x + d,z + 2d note these are distinct as d # 0 and = + (x + d) + (z + 2d) =
3z 4+ 3d = 0. Conversely, suppose t +y+2 =0. Withd =y —x we have z = —z —y =
20+ 2y =2x+2x+2d=x+2d, and d # 0 as = # y.

A.1.6 Theorem 1.5, Existence condition

We claim A contains such a triple as long as Eqqyq.—0 A(z)A(y)A(z) > 37". To see
this, note that

H(z,y,2):x=y=zandz+y+2=0} 3" 1

{(z,y,2) & +y+2z=0} T 3u.gn 30

A.1.7 Theorem 1.5, 63/2 > 256/n3 > 37"

We check that 63/2 > 256/n® > 37" for all n € N, where § > 8/n.

Note 6%/2 > 4-64/n3 = 256/n3. Further 3" > n3/256 is true for all n € N as it is true
for n =1,2,3 and from then on, the left-hand side is multiplied by 3 each step but the
right-hand side is multipled by (n + 1)3/n® which for n > 3 is at most 64/27 < 3.
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A.1.8 Theorem 1.5, Iterations

We count the number of steps in the iteration. Let § = dg > 8/n and note (d;);en is
strictly increasing. We have

51'71 61'71 60 60 ‘

We claim that if ¢ > 4/6 then §; > 24. It suffices to show

5\ 4/
<1+4) 0 >20

— 1+§225/4.

We show that for all 0 <y <1 we have 1 4+ y > 2Y.

Define g: R — R,y — 14+ y —2Y. Note ¢g(0) = g(1) = 0 and ¢'(y) = 1 — (log 2)2Y.
Now ¢'(y) > 0 if and only if 1 > (log2)2¥ if and only if y < —loglog2/log2. With
y* = —loglog 2 =~ 0.53, we see g is strictly increasing in [0, y*] and strictly decreasing in
[y*, 1], giving the desired result.

Finally, we sum the geometric series

A.2 Annotations to Chapter 2

A.2.1 Lemma 2.2, [(z+d) —¢(x)| < 27/k

We claim there exists d € {1, ..., k} such that [¢(z+d) — ¢ (x)| < 2n/k for all x € Zy.

Suppose we have distinct ¢,5 € {0,...,k} such that |¢(i) —(j)| < 27/k. Assume i < j
and set x =i,d=j—i€{l,...,k}. Then for all y € Zy,

9y +d) — 6()| = [0y — DI + &) — (@) = [pla+d) - vla)| < -

A.2.2 Lemma 2.2, Partitioning into arithmetic progressions

The claim that we can partition a residue class modulo d into arithmetic progressions
of lengths between r/2 and r holds provided N/2k > r/2. Since r/2 = ek/4x this is
equivalent to € < 27,

Note this condition is essentially vacuous because in the case ¢ > 2 we note that
diam(A) < 2 for any set A C Zy.
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A.3 Annotations to Chapter 3

A.3.1 Theorem 3.1, Using Roth’s theorem

By Roth’s Theorem, there exists a constant C' such that for N € N and A C [N] with
|A| > CN/loglog N we know A contains a arithmetic progression of length 3.

Given € > 0 choose k € N such that

€ Ck

> -
8t~ loglogk
that is, k > e®" . Then any subset A C [k] with density at least €/87 has size at least
Ck/loglogk so contains an arithmetic progression of length 3 by Roth’s Theorem.

A.3.2 Theorem 3.1, Pigeonhole principle on the circle

Suppose the unit circle is partitioned into at most 87 /e sets each of diameter at most
/2. Now consider the distribution of e(ax?/2), x = 1,...,k, among the partitioning
sets. If each set contains fewer than ek/87 elements then the total number of elements,
which is k, is strictly less than

8T €

——k=k

e 8w ’
a contradiction. Thus one such set contains e(ax?/2) for at least ek/8m values of x, and
we denote the set of such z by A.

A.3.3 Theorem 3.1, Distance from 1

Observe

| ™
v
®
7N
Q
—~
8
S
~—
[\
N———
|
®
7N
‘Q
N R
[\
N—

If we now consider two points 1, ¢ on the unit circle within £/2 of 1, we find

|€i91€i92 _ 1| — |ei92Heiel _ €7i92| — ‘eiol _ €7i02| — ‘eial _ 1 + 1 _ e*’i@g‘
< e — 1|1 — e—ify|
£ 93

<4 I =
_2+2 €

as required.
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A.3.4 Lemma 3.2, |1 —e(a)| > 4]«

We claim |1 — e(a)| > 4]|a]| for all o € R.

First note that both sides are only functions of the fractional part of «, so we may
assume a € (—1/2,1/2]. Further, both sides are invariant under changing a to —a.
Thus we may assume « € [0,1/2].

Let us write § = 2ma, so § € [0,71]. As |1 — e(a)]? = 2 — 2Re(a) = 2(1 — cos ) we have
to show 1 — cosf > 202?/m2. Using the series expansion of the cosine function, we find
that

2 o0 g2n 62
1—cosf —2 _1—2(—1)"(%)‘ =
n=0 ’
2 e 2n
o —4 n 0
~ N (~1
27 nZ; ) (2n)!

We can sum the geometric series,

D 31 ) B
o (4n)! — 8! 12! 2000 12! 20003 - (2000 — w4)°
It hence suffices to show
224 8 g2 16
> +

o7 =’ T 121 T 20008 - (2000 — 74)”

Finally, the approximation 3 < 7 < 16/5 gives the desired result.

A.3.5 Lemma 3.3, Properties of ||-||

We demonstrate some properties of the function ||z|| = [(z)].

We first claim that ||z|| < |z|. If || > 1/2 then ||z|| = [(z)] < 1/2 < |z|. Butif |z] < 1/2
then (z) = x and the result follows.

We also observe that ||z] = ||—z]||.
Our second claim is the triangle inequality ||z + y|| < ||lz]| + ||ly||-

Considering the range of ||-||, we are done if ||x| or ||y| is at least 1/2. Thus assume
llz|l, llyl| < 1/2. Similarly, we are done if both ||z, ||y|]| > 1/4, so by symmetry we may
assume that ||z < 1/4. Writing « = [z] + (x), v = [y] + (v),

Iz +yll = llz] + (=) + [yl + W = I<z) + W)

and so we may assume z,y € (—1/2,1/2]. Summarising, we now assume x €
(—=1/4,1/4),y € (—1/2,1/2) and aim to show ||z + y|| < ||z|| + |ly||. Finally, note



40 Annotations

that this inequality is invariant under the transformation « — —x,y — —y, so we may
assume y € [0,1/2), and our inequality becomes

2+ yll < |z +y.

Note that our assumptions ensure x + y € (—1/4,3/4). We consider two cases. If
x4y < 1/2 then
lz+yll = |z +yl <o+ [yl = |2] +y.

Otherwise, if © +y > 1/2 we know that 2 > 0 and so

1
lz+yl=1-(z+yl<g<zty=lzl+y

A.3.6 Proof of Weyl’s inequality

Lemma A.1. Let Kk € Nand r € R with 7 > 0. For some 1 <[ < k let z1,...,2; be
real numbers with [|x; — x;|| > 1/r for i # j. Suppose for all i = 1,...,[ the fractional
part (z;) € (—1/2,1/2] has the same sign. Then

!
1
Zmin{HwH’k} <k+r+rlog(l—1).
i=1 ‘

Proof. To prove this, we first observe that the statement is invariant under the trans-
formation (z1,...,2;) — (—21,...,—x;) and we can further pass to fractional parts in

(—1/2,1/2].

As all fractional parts have the same sign, we may assume that

1
0<r <" <o < =

2
and our hypothesis becomes z; — ; > 1/r for all ¢ < j. Then
— 1
x1 >0, T > !
for i = 2,...,l. We now bound the sum under consideration
l l
1 } 1
min ko <k+
Y ) <5+ X
Lo -1 -1
<k+r I :k+r2i —k+r+rz2
1= 1= 1=

-1
1
§k+r+r/ —dr=k+r+rlog(l—1),
1 T
completing the proof. O

Lemma A.2. Let £ € N and » € R with » > 0. For some 2 <1 < k let xq,...,2
be real numbers with ||z; — x;|| > 1/r for i # j. Suppose not all fractional parts
(x;) € (=1/2,1/2] for i = 1,...,[ have the same sign. Then

!
1 l
min{, k} <k+44r+2rlog
2y 2
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Proof. Renaming the variables, we may assume

1 1
—§§$m<"‘<$1<0§yl< <yn§§

for some 1 < m,n <1 —1 with m +n =1, and where z; —x; > 1/r and y; —y; > 1/r
for all i < j, y1 — 21 > 1/r and |z1| > 1/(2r). Then as before

1
x| > 0, >
|1 vy
1—1 j—1
|$1’> 5 ij
r
fori=2,...,mandl=2,...,n, and so

me{u k) imm{n;n’k}
<k+2r+2mm{ ) me{uy@n |

m—ll n— 1
§k+4r—i—r/ d7'+1“/ de
1 T 1 T

=k+4r +rlog(m — 1)+ rlog(n — 1)

I —
< k+44r+2rlog
as claimed. O

In our case, we have r = 2¢ and | = [¢/4] + 1 and there is an additional factor of 1/2
in all but the first summand. If all fractional parts have the same sign, we obtain

v+|q/4] 1 -
indk —— Ve D Dol =1
> mm{ ’2||2auy} Shtgtglel—1)

u=v
<k+q(l+logq—log4)
<k+qlogg.

Otherwise,

2 2 2
Lq/4§—1)
)
q-

<k+ (8—|—410g 4)

Z mins k, — ¢ <k+2r+ -+ - +rlog
2|12ccul|

U=v

§k+q(6+log

<k+q(6+log

We claim this is at most k + 4qlogq. Indeed,

—4
k:+q<8+4logq )§k+4qlogq
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which is true as e < 8.

Combining the bounds for the partial sums, we obtain

Ui 1 20k — 1) +1
2 mind b | < | gl | O o8
< B/ﬂ (k +4qlogq)

16k
< T(k + 4qlog q)

provided that 16k > ¢. Under this assumption, we derive Weyl’s inequality since
k—1
16k
’Z e(axg)( < \/(k +4qlog q)
q
< Ak + 8+/klog
> — q.
Vi

A.3.7 Lemma 3.5, Density of [

We observe that the density of I is

Il 2 +1

Zy] N
Note that
(A, T+ (=) =By A(x) By o—s I(y)(—1(2))
=B, A(z) Ey—.—o I(y)1(2)
=0
and

(A, T (=1)) = (A, T (=I)
)

We claim this is (A, |[|2). Tt suffices to show I(=I) = |[|2. Indeed,
I(=D(w) = (; 1)) (3o (1))
= ;I ()] (y)w(w)wy(—y)
= mﬁijmwmmw
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as required.

A.3.8 Lemma 3.5, |I|? > ¢2/2

To obtain the inequality [A(0)]|Z(0)]? > ae?/2 we need to show |I(0)|? > €2/2, that is,
|12 > €%/2. We will carry out equivalence transformations, writing 3 = eN/2 = s + ¢
with s € Z and ¢ € [0, 1).

2
32 ><
2
AN a1 e
> 2
N2 - 2

4182 +48) +1>26
252 +4s + 1 > 4st + 2t%.

(!

We note that 4s > 4st and so if s > 1 we are done as 2sZ + 1 > 2t2. But if s = 0 then
the above is equivalent to ¢t < 1/ V2. That is, we are done unless

V2 <eN < 2.

In this case, we use an averaging argument to show the original claim of Lemma 3.5.
The assumptions now are ¢ € (v/2/N,2/N) and AN [~1,1] = (). Note that 4N < 8/e
and so it suffices to find r # 0 with |A(r)| > /8N > ea/16. We know that

Y AP =14 =a
= Z|A(r)|2 +a=a
r#£0

and hence by averaging we see that there exists an r # 0 such that

64N
8va(l—a)N >a O N1

Finally, suppose this it not the case, i.e, @ > 64N/(64N+1) and recall that AN[—1,1] =0
and hence o <1 —3/N. But now we observe that

We are done if

3 BN
o2 o 0V 191N —3 <
N 6Nt+1 ) 3<0

which gives the desired contradiction.
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A.3.9 Lemma 3.5, |I| <2¢

Next we consider the inquality |I| < 2e. Once again, this is not true in general, however,
in the case when it this fails we can immediately prove the original Lemma 3.5.

21N 4+ 1

I\QJ\Jfgzg
N

— 2[%J+1§25N

1] =

Writing 3 = eN/2 and further § = s+t with s € Z and t € [0, 1),
— 2|pB]+1<4p
<— 1< 2s+4t.
This is immediate if s > 1. But if s = 0 this is equivalent to ¢t > 1/4. Thus, |I| < 2¢
unless
eN E(O 1)
2 "4

soe € (0,1/2N), AN[0] =0 and I = [0]. As before, we will use an averaging argument
to resolve this case. We aim to find an 7 with 0 < |r| < 8/¢2, but 16N < 8/£2 so this
condition reduces to r # 0. We further require [A(r)| > ea/16 so it suffices to find r # 0
with [A(r)| > a/32N. Again,

SIAEE = a - a?
r#0

so, by averaging, there exists r # 0 such that

- l—a) _ ol —a)
A > & > .
AP > o= > S
We are done if
al—a) a? PN 1024N
N 7 (32N)? ~ 1024N 4+ 1°

Finally, suppose this is not the case and recall that AN[0] =0 so « < 1—1/N. But
now we observe

1 1024N
——<—— <<= —1023N-1<
N 7 1024N +1 023 =0,

giving the desired contradiction.

A.3.10 Lemma 3.5, |I(r)| < 1/(2N|r/N||)

We now obtain the inequality

Note that

NI(r)= > I(k)e*m+/N
k€N
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_ Z ( eZWir/N) k

—eN/2<k<eN/2
— o(r |_aN/2JM
(/N) 1—€(T'/N) .
Thus
N L LI
NI =" 0 m < 2/

1 1

()| < s = 51
2N|lr/N| - 2|r|

A.3.11 Lemma 3.5, Integral bound

To complete the proof, we obtain the inequality

« 3ae?
g — < )
4r2 16
r>8/e?

that is

1 32
Z ﬁg%v

r>8/e?
by integrating the function 1/r2 as follows.

LY P )
- e R _ .
r?2 = Jg 2 r B 8 — g2

r>8/e? fe2=1 "

We are done provided

g2 3e2
< —

2
S22 =7 <= 3e“+4e —-24 <0

which clearly holds for all 0 < e < 1.

A.3.12 Second proof of Theorem 3.1, Pigeonhole principle on the circle

We claim that for k € N there exists 1 < ¢ < k and p coprime to g such that |« —p/q| <
1/kq.

Partition the unit circle into intervals of width 27w /k and consider the distribution of
e(ra) for r = 0,..., k. By the pigeonhole principle, there exists r < s such that e(ra)
and e(sa) are in the same interval, i.e., there exists ¢ with 1 < ¢ < k and ||ga| < 1/E.
Then there exists an integer p such that |go — p| = ||gqa|| < 1/k and so |a—p/q| < 1/kq.
If we write p/q = p’/q' in lowest terms so (p',¢') = 1s01 < ¢ < g then |a—p'/¢| <
1/kq < 1/kq'.
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A.3.13 Second proof of Theorem 3.1, Case ¢ > ()

We derive the sufficient condition @ < 12k/log k for the equation
4k 32k
W +8\/k10gq S W
28K
8 \/ k 10g q S W
4kQlog q < 49k

Qlogq < 12k
Q < 12k/logk

Tl ]

using that ¢ < k.

A.3.14 Second proof of Theorem 3.1, Choice of ()

We show the choice 256k'/3 = Q%0 satisfies the condition Q < 12k/log k for sufficiently
large k.

256%%2 <

129k° 64\ 5 k3
—— 256 — ) <
(log k)® ( 3 ) ~ (logk)®

We find the minimum of the right hand side by differentiating with respect to k,
d K 3k? 5k? 5

dk (og k)~ (logh)®  (oghy 0 > [loek=gz.

We deduce that for k > €%/ the right hand side is strictly increasing. We claim the
inequality is satisfied for k > 10°. As 64/3 < 25, we have that

64\° k3
256 — ) < —
( 3 ) ~ (logk)®

1015
5log 10)°

— 256-25° < (
— (log10)° < 27.

Now log 10 < 5/2, so we are done since 55 < 212,
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