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Chapter 1

Fourier Analysis on Finite Abelian Groups

The classi�cation of �nite Abelian groups tells us that they are all products of cyclic

groups, i.e., they have the form

Zm1 × Zm2 × · · · × Zmk
,

where we write ZN = Z/NZ. Two important examples are ZN and Znp , which we shall

write as Fnp .

A character on a �nite Abelian group G is a homomorphism ψ : G → C∗, the multi-

plicative group of C. If |G| = n then for every x ∈ G we have nx = 0, so (ψ(x))n = 1,
i.e., ψ(x) has to be an nth root of unity.

Example. (i) If G = ZN , let ω = e2πi/N . Then for every r ∈ ZN the function

x 7→ ωrx is a character. All characters have this form since ψ(1) determines ψ,
i.e., if ψ(1) = ωr then ψ(x) = ωrx for every x ∈ G.

(ii) If G = Fkp let ω = e2πi/p and for each r = (r1, . . . , rk) ∈ G and each

x = (x1, . . . , xk) ∈ G write r · x = r1x1 + · · ·+ rkxk. Then the map x 7→ ωr·x is a

character. Again this gives all characters, since ψ is determined by its values on

(1, 0, . . . , 0), (0, 1, 0, . . . , 0),. . . ,(0, . . . , 0, 1).
(iii) In general, if G = Zm1 × · · · × Zmk

, then setting ωmj = e2πi/mj , the function

x 7→ ωr1x1
m1

· · ·ωrkxk
mk

is a character for every (r1, . . . , rk) ∈ G. We shall see that

these are all the characters on G.

Lemma 1.1. If ψ and χ are distinct characters on �nite Abelian group G, then

Ex∈G ψ(x)χ(x) = 0.

Proof. Let us write φ = ψχ̄. It is easy to check that φ is a non-trivial character. Then See A.1.1.

Ex φ(x) = Ex φ(x+ y)

for any y ∈ G, since adding y permutes the elements of G. But that is

Ex φ(x)φ(y) = φ(y) Ex φ(x).

Since φ is non-trivial, we can �nd y such that φ(y) 6= 1, so Ex φ(x) = 0.
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We shall make frequent use of two normed spaces, L2(G) and l2(G). If f : G→ C, then

‖f‖2
L2(G) = Ex∈G|f(x)|2 =

1
|G|

∑
x∈G

|f(x)|2,

‖f‖2
l2(G) =

∑
x∈G

|f(x)|2.

Proposition 1.2. The characters form an orthonormal basis of L2(G).

Proof. We have just shown that distinct characters are orthogonal. Also, Ex|ψ(x)|2 = 1
since ψ(x) is always a root of unity. Since we have constructed |G| di�erent characters,
the proposition is proved.

Let G be a �nite Abelian group and let f : G → C. We de�ne Ĝ, the dual group of G,
to be the group of all characters on G under pointwise multiplication.

The Fourier transform f̂ of f is the function from Ĝ to C, given by the formula

f̂(ψ) = Ex∈G f(x)ψ(x).

Example. If G = ZN , ω = e2πi/N , then let us identify r with the character x 7→ ωrx.
Then

f̂(r) = Ex f(x)ωrx

= Ex f(x)e2πirx/N

=
1
N

(
f(0) + f(1)e2πir/N + f(2)e4πir/N + · · ·

)
.

Compare this with the �usual formula�

f̂(r) =
∫ 1

0
f(x)e2πirx dx.

Proposition 1.3. Let G be a �nite Abelian group. Then
ˆ̂
G = G.

Proof. For x ∈ G let δx : Ĝ → C be the map ψ 7→ ψ(x). Then it is easy to check thatSee A.1.2

and A.1.3.
the map x 7→ δx is a homomorphism from G to

ˆ̂
G. If x 6= y, then we can �nd ψ ∈ Ĝ

such that ψ(x) 6= ψ(y) since there are |G| linear independent characters. It follows that
δx 6= δy, so the map x 7→ δx is an injection. Therefore, |G| ≤ | ˆ̂G| ≤ |Ĝ| ≤ |G|.

Proposition 1.4. The Fourier transform has the following three properties.

(i) (Plancherel identity) 〈f̂ , ĝ〉 = 〈f, g〉, i.e.,∑
ψ∈Ĝ

f̂(ψ)ĝ(ψ) = Ex∈G f(x)g(x)

In particular, ‖f̂‖l2(Ĝ) = ‖f‖L2(G).

(ii) (Inversion formula) f(x) =
∑

ψ∈Ĝ f̂(ψ)ψ(x).
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(iii) (Convolution identity) De�ne f ∗ g and f̂ ∗ ĝ by

(f ∗ g)(x) = Ey+z=x f(y)g(z), (f̂ ∗ ĝ)(ψ) =
∑
φχ=ψ

f̂(φ)ĝ(χ).

Then f̂ ∗ g = f̂ ĝ and f̂ ∗ ĝ = f̂g.

Proof. (i)

〈f̂ , ĝ〉 =
∑
ψ

f̂(ψ)ĝ(ψ)

=
∑
ψ

Ex f(x)ψ(x) Ey g(y)ψ(y)

= Ex,y f(x)g(y)
∑
ψ

ψ(x− y)

If x 6= y then pick φ such that φ(x− y) 6= 1. Then∑
ψ

ψ(x− y) =
∑
ψ

φψ(x− y) = φ(x− y)
∑
ψ

ψ(x− y)

so
∑

ψ ψ(x− y) = 0. If x = y then
∑

ψ ψ(x− y) = |G|. Hence we obtain

Ex,y|G|f(x)g(y)δxy = Ex|G|P(y = x)f(x)g(y) = 〈f, g〉.

(ii) ∑
ψ

f̂(ψ)ψ(x) = Ey f(y)
∑
ψ

ψ(y)ψ(x)

= Ey f(y)|G|δyx
= f(x)

(iii) We �rst show that f̂ ∗ g(ψ) = f̂ ĝ(ψ),

f̂ ∗ g(ψ) = Ex f ∗ g(x)ψ(x)
= Ex Ey+z=x f(y)g(z)ψ(x)
= Ex Ey+z=x f(y)ψ(y)g(z)ψ(z)
=
(
Ey f(y)ψ(y)

)(
Ez g(z)ψ(z)

)
= f̂ ĝ(ψ)

We claim that f̂ ∗ ĝ = f̂g. For ψ ∈ Ĝ,

f̂g(ψ) = Ex f(x)g(x)ψ(x)

= Ex
∑
φ1,φ2

f̂(φ1)φ1(x)ĝ(φ2)φ2(x)ψ(x)

=
∑
φ1,φ2

f̂(φ1)ĝ(φ2)δφ1φ2,ψ

=
∑

φ1φ2=ψ

f̂(φ1)ĝ(φ2)

= f̂ ∗ ĝ(ψ)

as required.
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If A is a subset of G, we will write A(x) instead of χA(x) for the characteristic function.See A.1.4.

Notice that Â(0) = ExA(x) · 1 = |A|/|G|, the density of A in G. Also,

∑
ψ

|Â(ψ)|2 = Ex|A(x)|2 = ExA(x) =
|A|
|G|

.

Theorem 1.5 (Roth's Theorem in Fn3 ). Let A be a subset of Fn3 of density at least 8/n.
Then A contains a subset of the form {x, x + d, x + 2d}, d 6= 0, or equivalently, x, y, z
not all equal such that x+ y + z = 0.

Proof. A contains such a triple as long asSee A.1.5

and A.1.6.

Ex+y+z=0A(x)A(y)A(z) > 3−n.

But

Ex+y+z=0A(x)A(y)A(z) = A ∗A ∗A(0)

=
∑
ψ

̂A ∗A ∗A(ψ)ψ(0)

=
∑
ψ

Â(ψ)3

= Â(0)3 +
∑
ψ 6=0

Â(ψ)3

≥ Â(0)3 −
∑
ψ 6=0

|Â(ψ)|3

≥ Â(0)3 −max
ψ 6=0

|Â(ψ)|
∑
ψ 6=0

|Â(ψ)|2

≥ Â(0)3 −max
ψ 6=0

|Â(ψ)||A|.

Hence, if |A| = δ this is equal to δ3 − δmaxψ 6=0|Â(ψ)|. As a convention, if A ⊂ G then

|A| means the density of A.

In particular, if |Â(ψ)| ≤ δ2/2 for every ψ 6= 0 thenSee A.1.7.

Ex+y+z=0A(x)A(y)A(z) ≥ δ3

2
≥ 256

n3
> 3−n

for all n ∈ N, so we are done.

Otherwise, there exists ψ 6= 0 such that |Â(ψ)| > δ2/2. Suppose this corresponds in

r ∈ Fn3 , i.e.,
ψ(x) = ωr·x

where ω = e2πi/3. So Â(ψ) = ExA(x)ωr·x. Let f(x) = A(x) − δ and de�ne Xi = {x :
r · x = i} for i = 0, 1, 2. Then

Â(ψ) = 1
3

(
Ex∈X0 A(x) + ω Ex∈X1 A(x) + ω2 Ex∈X2 A(x)

)
= 1

3

(
Ex∈X0 f(x) + ω Ex∈X1 f(x) + ω2 Ex∈X2 f(x)

)
.
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Since |Â(ψ)| ≥ δ2/2, there must exist i such that

|Ex∈Xi f(x)| ≥ δ2

2
.

It follows that there exists j such that

Ex∈Xj f(x) ≥ δ2

4

for the following reason. Ex f(x) = 0 so if

Ex∈Xi f(x) ≤ −δ
2

2

then

Ex∈Xj f(x) ≥ δ2

4

for some j 6= i. It follows that

Ex∈Xj A(x) ≥ δ +
δ2

4

so the density of A in Xj is greater then δ by a factor of at least 1 + δ/4.

This allows us to iterate since Xj
∼= Fn−1

3 . At each iteration, we lose a dimension, but See A.1.8.

the density η goes up by a factor of at least 1 + η/4. In particular, after 4/δ steps, the
density reaches at least 2δ. Then after 4/2δ steps it reaches 4δ, etc. Since the density
can never exceed 1, the iteration stops before we reach

4
δ

+
4
2δ

+
4
4δ

+ · · · = 8
δ

steps. So long as n ≥ 8/δ, we obtain a triple of the desired kind.

We also need to check that at each stage �δ ≥ 8/n�. But if δ ≥ 8/n then

δ

(
1 +

δ

4

)
≥ 8
n

(
1 +

2
n

)
≥ 8
n− 1

.





Chapter 2

Roth's Theorem

The aim of this section is to prove the following result.

Theorem 2.1. There exists a constant C > 0 such that if N ∈ N and A ⊂ [N ] has
cardinality at least CN/ log logN then A contains an arithmetic progression of length 3.

The proof will occupy the rest of the section. To begin with, let A,B,C ⊂ ZN and

suppose that N is odd. Then

Ex+z=2y A(x)B(y)C(z) = Ex+z=y A(x)B2(y)C(z)

where B2(y) = B(y/2). Let α, β, γ be the densities of A,B,C and note that the density

of B2 is also β. Then the last expression is

〈A ∗ C,B2〉 = 〈ÂĈ, B̂2〉

=
∑
r

Â(r)Ĉ(r)B̂2(r)

where we identify r with the function x 7→ ωrx, ω = e2πi/N ,

≥ Â(0)B̂2(0)Ĉ(0)−
∑
r 6=0

|Â(r)||B̂2(r)||Ĉ(r)|

≥ αβγ −max
r 6=0

|Â(r)|〈|B̂2|, |Ĉ|〉

≥ αβγ −max
r 6=0

|Â(r)|‖B̂2‖‖Ĉ‖

= αβγ − (βγ)1/2 max
r 6=0

|Â(r)|.

Therefore, either the original expectation is at least αβγ/2 or there exists r 6= 0 such

that |Â(r)| ≥ α(βγ)1/2/2.

Lemma 2.2. Let N ∈ N and ε > 0. Let ψ : ZN → C be a character. Then it is

possible to partition ZN into arithmetic progressions Pi, when viewed as subsets of

{0, 1, . . . , N − 1}, of length at least c(ε)
√
N such that the diameter of ψ(Pi) is at most

ε for every i. The constant can be taken to be c(ε) = ε/8π.

Proof. Let k = b
√
Nc. Since the unit circle has circumference 2π, there must be two of See A.2.1.
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the values ψ(0), . . . , ψ(k) that are within 2π/k of each other. Since ψ is a character, it

follows easily that there exists d ∈ {1, . . . , k} such that

|ψ(x+ d)− ψ(x)| ≤ 2π
k

for every x ∈ ZN . Therefore, if P is an arithmetic progression of length at most r and
common di�erence d, then diamψ(P ) ≤ 2πr/k by the triangle inequality. Let r = εk/2π.

Now partition {0, 1, . . . , N −1} into residue classes modulo d. Since d ≤ k, each of theseSee A.2.2.

has size at least N/2k. It is easy to see that such a set can be partitioned into arithmetic

progressions Pi of common di�erence d and lengths between r/2 and r.

We are therefore done since r/2 ≥ ε
√
N/8π.

Now we will prove Theorem 2.1.

Let A ⊂ [N ] have density δ. We set B = C = A ∩ [N/3, 2N/3] and consider two cases.

Case 1. If |B| < δN/6 then either∣∣∣A ∩
[
1,
N

3

]∣∣∣ ≥ 5Nδ
12

or ∣∣∣A ∩
[2N

3
, N
]∣∣∣ ≥ 5Nδ

12
.

So there exists a subinterval of [N ] of length at least N/6 in which A has density at least

5δ/4.

Case 2. Now suppose |B| = |C| ≥ δN/6. We �rst ensure that N is odd by passing to

N ′ = N − 1 if necessary. Then the density of A in [N ′] is δ′ ≥ δ − 1/N . Note that in

particular, δ′ ≥ δ/2 provided δN ≥ 1. The observation at the beginning of the section

divides this case into two subcases.

Case 2A. If

Ex+y=2y A(x)B(y)C(z) ≥ αβγ/2 ≥ 1
2
δ

2
δ

6
δ

6
=

δ3

144
then we have an arithmetic progression of length 3 modulo N in A × B × C provided

that δ3/144 > 1/N . This is a genuine arithmetic progression in [N ] as B and C lie in

the middle third.

Case 2B. Otherwise, there exists an r 6= 0 such that

|Â(r)| ≥ α(βγ)1/2

2
≥ 1

2
δ

2
δ

6
=
δ2

24
.

Let ψ : x 7→ ωrx. By Lemma 2.2, we can partition Z/N ′Z into arithmetic progres-

sions P1, . . . , Pm all of cardinality at least (δ2/48)
√
N ′/8π ≥ δ2

√
N/500π such that

diamψ(Pi) ≤ δ2/48 for every i.

Let f(x) = A(x) − δ′ be the balanced function of A. Note that f̂(r) = Â(r) as r 6= 0
and so ψ is non-trivial. For each i, let xi be some element of Pi. Then

δ2

24
≤ |Â(r)| = |f̂(r)| = |Ex f(x)ωrx|
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=
∣∣∑
i

|Pi|Ex∈Pi f(x)ψ(x)
∣∣

≤
∑
i

|Pi||Ex∈Pi f(x)ψ(x)|.

But

|Ex∈Pi f(x)ψ(x)| ≤ |Ex∈Pi f(x)ψ(xi)|+ |Ex∈Pi f(x)(ψ(xi)− ψ(x))|

= |Ex∈Pi f(x)|+ δ2

48
.

Therefore, ∑
i

|Pi||Ex∈Pif(x)| ≥ δ2

48
.

But
∑

i|Pi|Ex∈Pi f(x) = 0 so

∑
i

|Pi|
(
|Ex∈Pi f(x)|+ Ex∈Pi f(x)

)
≥ δ2

48
.

It follows that Ex∈Pi f(x) ≥ δ2/96 for some i. Therefore,

|A ∩ Pi|
|Pi|

≥ δ′ +
δ2

96
≥ δ +

δ2

100

provided δ2N ≥ 2400.

The proof is basically over. From now on, we argue slightly less formal. We have

shown that if A does not contain an arithmetic progression of length 3 then there is a

subprogression P of cardinality at least δ2
√
N/5000, inside which A has density at least

δ+δ2/100. As long as δ8N ≥ (5000)4, this implies |P | ≥ N1/4. This leads to an iteration

A0 ⊂ [N0], A1 ⊂ [N1], . . . and our assumptions continue to be valid if δ8Nk ≥ (5000)4.

Since Nk ≥ N (1/4)k
and as we cannot have more than

100
δ

+
100
2δ

+
100
4δ

+ · · · = 200
δ

steps, the theorem is proved if

N (1/4)200/δ ≥ (5000)4

δ8
.

This is implied by (1
4

) 200
δ logN ≥ 4 log 5000− 8 log δ

⇐⇒ − 200
δ

log 4 + log logN ≥ log(4 log 5000− 8 log δ)

⇐⇒ log logN ≥ 200
δ

log 4 + log(4 log 5000− 8 log δ)

⇐= log logN ≥ 400
δ

+ 36 +
8
δ
.

It su�ces to assume δ log logN ≥ 500, which is of the required form.





Chapter 3

Quadratic Recurrence

Notation. e(x) means e2πix, ‖x‖ means the distance from x to the nearest integer, 〈x〉
means the residue class modulo 1 of x that lies in (−1

2 ,
1
2 ]. Hence ‖x‖ = |〈x〉|.

In the previous section, we essentially proved the following result: if α ∈ R and k ∈ N
then there exists d ∈ {1, 2, . . . , k} such that

|e(αd)− 1| ≤ 2π
k

by the pigeonhole principle. Now we shall prove a much deeper result of a similar kind.

Theorem 3.1. For every ε > 0 there exists k such that for every α ∈ R there exists

d ∈ {1, . . . , k} such that

|e(αd2)− 1| ≤ ε.

Proof. By Roth's theorem, there exists k such that any subset A ⊂ {1, . . . , k} of size at See A.3.1.

least εk/(8π) contains an arithmetic progression of length 3.

Partition the unit circle into at most 8π/ε sets of diameter at most ε/2. Then there must See A.3.2

and A.3.3.be a set A ⊂ {1, . . . , k} of density at least ε/(8π) such that, for every x ∈ A, e
(
αx2/2

)
lies in the same one of these sets. Inside A we can �nd x− d, x, x+ d with d 6= 0. Thus,
rewriting e(αd2) as

e(αd2) = e
(α

2
(
(x− d)2 − 2x2 + (x+ d)2

))
= e

(
α(x− d)2

2

)
e

(
αx2

2

)
e

(
α(x+ d)2

2

)
e

(
αx2

2

)
,

we see that this is within ε/2 + ε/2 = ε of 1.

If one checks, one �nds that k can be taken to be ee
c/ε
. We shall now obtain a much

better bound. We shall investigate sums of the form

k−1∑
x=0

e(αx2)

and derive Weyl's inequality. A useful trick is to look instead at∣∣∣k−1∑
x=0

e(αx2)
∣∣∣2 =

k−1∑
x=0

k−1∑
y=0

e(α(x2 − y2)) =
∑

(u,v)∈W

e(αuv)
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where u = x + y, v = x − y. Here, u ranges from 0 to 2(k − 1). If u ≤ k − 1 then the

possible pairs (x, y) with x+ y = u are (0, u), (1, u− 1), . . . , (u, 0), so possible values of

v are −u, 2− u, 4− u, . . . , u, so the �rst part of the sum has modulus∣∣∣k−1∑
u=0

u∑
w=0

e(αu(2w − u))
∣∣∣ ≤ k−1∑

u=0

∣∣∣ u∑
w=0

e(2αuw)
∣∣∣

since |e(αu2)| = 1. If u ≥ k then the possible pairs (x, y) are

(u− k + 1, k − 1), (u− k + 2, k − 2), . . . , (k − 1, u− k + 1)

so the possible values of v are

u− 2(k − 1), u− 2(k − 2), . . . , 2(k − 1)− u.

Thus, the second part of the sum is

2(k−1)∑
u=k

2(k−1)−u∑
w=0

e(αu(u− 2(k − 1) + 2w))

and its modulus is at most

2(k−1)∑
u=k

∣∣∣2(k−1)−u∑
w=0

e(2αuw)
∣∣∣.

Lemma 3.2. Suppose ‖α‖ 6= 0. Then∣∣∣ t−1∑
w=0

e(αw)
∣∣∣ ≤ 1

2‖α‖
.

Proof. Summing a geometric series,∣∣∣ t−1∑
w=0

e(αw)
∣∣∣ = ∣∣∣1− e(αt)

1− e(α)

∣∣∣.
But |1− e(αt)| ≤ 2 and |1− e(α)| ≥ 4‖α‖.See A.3.4.

Therefore, ∣∣∣k−1∑
x=0

e(αx2)
∣∣∣2 ≤ 2(k−1)∑

u=0

min
{
k,

1
2‖2αu‖

}
since we also know that ∣∣∣ t−1∑

w=0

e(αw)
∣∣∣ ≤ t.

Lemma 3.3. Let α ∈ R and let p, q be integers with (p, q) ≤ 2 such that∣∣α− p

q

∣∣ ≤ 2
q2
.

Suppose t is an integer with 1 ≤ t ≤ q/4. Then

‖αt‖ ≥ 1
2q
.
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Proof. By the triangle inequality and as tp/q 6∈ Z, See A.3.5.

‖αt‖ =
∥∥∥p
q
t+
(
α− p

q

)
t
∥∥∥ ≥ ∥∥p

q
t
∥∥− ∥∥∥(α− p

q

)
t
∥∥∥ ≥ 1

q
− 2
q2
q

4
=

1
2q
.

Assuming α ∈ R and p, q are coprime integers such that |α − p/q| ≤ 1/q2 then let us See A.3.6.

estimate the sum
v+bq/4c∑
u=v

min
{
k,

1
2‖2αu‖

}
.

Now |2α−2p/q| ≤ 2/q2 so 2α satis�es the hypothesis of Lemma 3.3. Therefore, the sum

is bounded from above by

k + 2q +
2q
2

+ · · ·+ 2q
bq/4c

≤ k + 4q log q.

It follows that, provided 16k ≥ q,

2(k−1)∑
u=0

min
{
k,

1
2‖2αu‖

}
≤ 16k

q
(k + 4q log q).

This gives us the next result.1

Theorem 3.4 (Weyl's Inequality). Let α ∈ R, let (p, q) = 1 and suppose that |α−p/q| ≤
1/q2. Then ∣∣∣k−1∑

x=0

e(αx2)
∣∣∣ ≤ 4k

√
q

+ 8
√
k log q.

Now let us tackle Theorem 3.1. So we let ε > 0, and consider k ∈ N and α = a/N for

integers a,N . We �rst establish another lemma.

Lemma 3.5. Let A ⊂ ZN , |A| = α the density. Let 0 < ε ≤ 1 and suppose A ∩
[−εN, εN ] = ∅. Then there exists r such that 0 < |r| ≤ 8/ε2 and |Â(r)| ≥ εα/16.

Proof. Let I = [−εN/2, εN/2]. Then if x, y ∈ I then x − y 6∈ A. It follows that See A.3.7

and A.3.8.〈A, I ∗ −I〉 = 0, so 〈Â, |Î|2〉 = 0. Hence

∑
r 6=0

|Â(r)||Î(r)|2 ≥ |Â(0)||Î(0)|2 ≥ αε2

2
.

But if |Â(r)| < εα/16 whenever 0 < |r| ≤ 8/ε2 then the left-hand side is less than

εα

16

∑
r

|Î(r)|2 +
∑

|r|>8/ε2

α|Î(r)|2.

But See A.3.9.∑
r

|Î(r)|2 = |I| ≤ 2ε

so the �rst term is at most αε2/8. Also, See A.3.10.
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|Î(r)| ≤ 1
2N‖ rN ‖

since NÎ(r) is a sum of a geometric progression with common ratio e(r/N), which is

equal to 1/2|r|. Therefore,See A.3.11. ∑
|r|>8/ε2

α|Î(r)|2 ≤ 2
∑

r>8/ε2

α

4r2
≤ 2
(3αε2

16

)
=

3αε2

8
.

But this is a contradiction.

Now let A = {a, 4a, 9a, . . . , k2a} ⊂ ZN . We would like to prove that A∩ [−εN, εN ] 6= ∅
unless ε is very small (as a function of k). So suppose A ∩ [−εN, εN ] = ∅. Then

Â(r) =
1
N

∑
x∈A

ωrx =
1
N

k∑
y=1

ωary
2

=
1
N

k∑
y=1

e(αry2).

The previous lemma implies that there exists r ≤ 8/ε2 such that

1
N

∣∣∣ k∑
y=1

e(αry2)
∣∣∣ ≥ |A|ε

16
=

kε

16N

so ∣∣∣ k∑
y=1

e(αry2)
∣∣∣ ≥ εk

16
.

Observe that, by the pigeonhole principle on the circle, there exist p and q with 1 ≤ q < kSee A.3.12.

and (p, q) = 1 such that ∣∣αr − p

q

∣∣ ≤ 1
kq
.

We now introduce a positive real parameter Q to be determined later, which we use to

distinguish two cases. If q ≤ Q then

|αr2q2 − rpq| ≤ rq

k
≤ 8
ε2
Q

k
.

If ar2q2 ∈ A, which is the case provided 1 ≤ rq ≤ k, then from our assumption A ∩
[−εN, εN ] = ∅ we have that

ε ≤ 8Q
ε2k

so ε3 < 8Q/k. Otherwise, if rq > k then

8q
ε2

≥ rq > k

so ε2 < 8Q/k. Provided Q ≤ k/8, we conclude from these two bounds that ε3 ≤ 8Q/k.

Now assume q > Q. In this case, we shall use Fourier analysis. We would like to apply

Weyl's inequality to obtain ∣∣∣ k∑
y=1

e(αry2)
∣∣∣ ≤ 32k

Q1/2
.

1In our later application of Weyl's inequality we will even have q ≤ k.
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For this, it su�ces to have
4k
√
q

+ 8
√
k log q ≤ 32k

Q1/2

which is guaranteed if Q ≤ 12k/ log k. This gives ε/16 ≤ 32/Q1/2, i.e., ε ≤ 512/Q1/2. See A.3.13.

Combining our requirements on the parameter Q from both cases

512
Q1/2

=
2Q1/3

k1/3

gives 256k1/3 = Q5/6, i.e., Q = 2566/5k2/5. Note this also satis�es the requirements

Q ≤ k/8 and Q ≤ 12k/ log k for su�ciently large k. So this choice of Q shows that See A.3.14.

ε ≤ Ck−1/5 for some constant C.

This shows that if k > C5ε−5 then the intersection A ∩ [−εN, εN ] is non-empty. That

is, there exists d ∈ {1, . . . , k} such that ad2 ∈ [−εN, εN ] modulo N , so there exists an

integer λ such that

|ad2 − λN | ≤ εN

so

‖αd2‖ ≤ |αd2 − λ| ≤ ε.

This proves Theorem 3.1

Theorem 3.6. Let q be a function x 7→ αx2 + βx + γ and let ψ(x) = e(q(x)). Let

P be an arithmetic progression of length m. Then, for all ε > 0, P can be parti-

tioned into arithmetic progressions Pi of length at least c(ε)m1/40, for each of which has

diamψ(Pi) ≤ ε.

Proof. By the previous result we can �nd d ≤ m1/2 such that ‖αd2‖ ≤ Cm−1/10.

Now q(x+ rd)− q(x) = α(2rdx+ r2d2) + βrd di�ers modulo 1 from 2αrdx+ βrd by at

most Cr2m−1/10. As long as r ≤ c(ε)1/2C−1/2m1/20 this is at most ε/8π.

Therefore, we can approximate e(α(2rdx+ r2d2) + βrd) = ψ(x+ rd)ψ(x) by e(2αrdx+
βrd) with an error of at most ε/4. Partition P into progressions Qi of common di�erence

d and length at least C ′m1/20. On each one of these, ψ(x+rd)ψ(x) can be approximated

to within ε/4 by a function of the form e(θr + θ′) and therefore it be partitioned into

subprogressions of length at least C ′′m1/40, on which ψ is constant to within ε (see

Section 2).





Chapter 4

Quadratic Uniformity

Lemma 4.1. Let G be a �nite Abelian group and let f : G→ C. Then

(i) ‖f̂‖4
4 = ‖f ∗ f‖2

2 = Ex,a,b f(x)f(x+ a)f(x+ b)f(x+ a+ b),
(ii) if ‖f‖∞ ≤ 1 then ‖f̂‖4

∞ ≤ ‖f̂‖4
4 ≤ ‖f̂‖2

∞.

Proof. For the �rst part,

‖f̂‖4
4 =

∑
ψ

|f̂(ψ)|4 = 〈f̂2, f̂2〉 = 〈f ∗ f, f ∗ f〉 = ‖f ∗ f‖2
2

= Ex|Ey+z=x f(y)f(z)|2

= Ey+z=u+v f(y)f(z)f(u)f(v)

= Ex,a,b f(x)f(x+ a)f(x+ b)f(x+ a+ b)

where y → x, u→ x+ a, v → x+ b, z → x+ a+ b.

For the second part, obviously ‖f̂‖4
∞ ≤ ‖f̂‖4

4, and also

‖f̂‖4
4 =

∑
ψ

|f̂(ψ)|4 ≤ max
ψ
|f̂(ψ)|2

∑
ψ

|f̂(ψ)|2

= ‖f̂‖2
∞‖f‖2

2 ≤ ‖f̂‖2
∞‖f‖2

∞ ≤ ‖f̂‖2
∞.

For practical purposes, ‖f̂‖∞ and ‖f̂‖4 are equivalent.

Lemma 4.2. Let f : G → C, f(x) = δ + g(x) where δ is a constant and Ex g(x) = 0,
that is, δ = Ex f(x). Then

(i)

Ex,a,b f(x)f(x+ a)f(x+ b)f(x+ a+ b)

= |δ|4 + Ex,a,b g(x)g(x+ a)g(x+ b)g(x+ a+ b),

(ii)

Ex,d f(x)f(x+ d)f(x+ 2d) = δ3 + Ex,d g(x)g(x+ d)g(x+ 2d).

Proof. For the �rst part, the left-hand side is

Ex,a,b(δ + g(x))(δ̄ + g(x+ a))(δ̄ + g(x+ b))(δ + g(x+ a+ b)),
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which can be expanded into 16 terms. Two of these terms are |δ|4 and

Ex,a,b g(x)g(x+ a)g(x+ b)g(x+ a+ b) and all the others are zero. For example,

Ex,a,b g(x)δ̄g(x+ a)g(x+ a+ b) = Ex,y,z g(x)δ̄g(y)g(z) = 0.

For the second part, the argument is similar.

Proposition 4.3. Let G be a �nite Abelian group of odd order, and let A ⊂ G, |A| = δ.
Suppose that

Ex,a,bA(x)A(x+ a)A(x+ b)A(x+ a+ b) ≤ δ4 + c.

Then

|Ex,dA(x)A(x+ d)A(x+ 2d)− δ3| ≤ c1/2.

Proof. Let A(x) = δ + g(x). Then the left-hand side of the �rst inequality equals

δ4 + ‖g ∗ g‖2
2 by the previous two lemmas. The left-hand side of the second inequality is

|Ex,d g(x)g(x+ d)g(x+ 2d)| = 〈g ∗ g, g2〉 ≤ ‖g ∗ g‖2‖g2‖2 ≤ ‖g ∗ g‖2.

De�nition. Let X, Y and Z be �nite sets and let f : X × Y ×Z → C. Then we de�ne

‖f‖U3 by

‖f‖8
U3

= Ex,x′ Ey,y′ Ez,z′ f(x, y, z)f(x, y, z′) · · · f(x′, y′, z′).

We also de�ne

[f0, f1, . . . , f7] = Ex,x′,y,y′,z,z′ f0(x, y, z)f1(x, y, z′) · · · f7(x′, y′, z′).

Proposition 4.4. Let X,Y, Z be �nite sets, and let f0, . . . , f7 be functions from X ×
Y × Z to C. Then

[f0, . . . , f7] ≤ ‖f0‖U3 · · · ‖f7‖U3 .

Proof. We use the Cauchy�Schwarz inequality to transform the left-hand side,

Ex,x′ Ey,y′ Ez,z′ f0(x, y, z)f1(x, y, z′)f2(x, y′, z)f3(x, y′, z′)

f4(x′, y, z)f5(x′, y, z′)f6(x′, y′, z)f7(x′, y′, z′)

≤
(
Ey,y′ Ez,z′ |Ex f0(x, y, z)f1(x, y, z′)f2(x, y′, z)f3(x, y′, z′)|2

)1/2

×
(
Ey,y′ Ez,z′ |Ex′ f4(x′, y, z)f5(x′, y, z′)f6(x′, y′, z)f7(x′, y′, z′)|2

)1/2

= [f0, f1, f2, f3, f0, f1, f2, f3]1/2[f4, f5, f6, f7, f4, f5, f6, f7]1/2.

Applying the same argument to the y and z variables we end up with the result stated.

Corollary 4.5. ‖·‖U3 is a norm on CX×Y×Z .

Proof. Let f0, f1 : X × Y × Z → C. Then

‖f0 + f1‖8
U3

= [f0 + f1, . . . , f0 + f1]

=
∑

ε∈{0,1}8
[fε0 , . . . , fε7 ]

≤
∑

ε∈{0,1}8
‖fε0‖U3 · · · ‖fε7‖U3

= (‖f0‖U3 + ‖f1‖U3)
8 .
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De�nition. Let G be a �nite group and let f : G→ C. Then

‖f‖8
U3

= Ex,a,b,c f(x)f(x+ a)f(x+ b)f(x+ a+ b)

f(x+ c)f(x+ a+ c)f(x+ b+ c)f(x+ a+ b+ c).

Lemma 4.6. Let a, b, c be integers and let G be a group such that the order of every

g ∈ G is coprime to all of a, b, c. Let f : G→ C and de�ne F : G3 → C by

F (x, y, z) = f(ax+ by + cz).

Then ‖F‖U3 = ‖f‖U3 .

Proof.

‖F‖8
U3

= Ex,x′,y,y′,z,z′ f(ax+ by + cz)f(ax+ by + cz′)f(ax+ by′ + cz)

f(ax+ by′ + cz′)f(ax′ + by + cz)f(ax′ + by + cz′)

f(ax′ + by′ + cz)f(ax′ + by′ + cz′).

Now substitute ax+ by + cz → X, a(x′ − x) → A, b(y′ − y) → B, c(z′ − z) → C. Then
this becomes

EX,A,B,C f(X)f(X + C)f(X +B)f(X +B + C)

f(X +A)f(X +A+ C)f(X +A+B)f(X +A+B + C).

It is not hard to check that the map (x, x′, y, y′, z, z′) 7→ (X,A,B,C) is |G|2 to 1.

Corollary 4.7. ‖·‖U3 is a norm on CG.

Proof. Let f, g : G → C. Let F,G : G3 → C be de�ned by F (x, y, z) = f(x + y + z),
G(x, y, z) = g(x+ y + z). Then (F +G)(x, y, z) = (f + g)(x+ y + z). So

‖f + g‖U3 = ‖F +G‖U3 ≤ ‖F‖U3 + ‖G‖U3 = ‖f‖U3 + ‖g‖U3 .

Lemma 4.8. Let X, Y , Z and W be �nite sets, and let f : X × Y × Z → C, g : X ×
Y ×W → C, h : X × Z ×W → C and k : Y × Z ×W → C be functions. Suppose that

‖f‖∞, ‖g‖∞, ‖h‖∞, ‖k‖∞ ≤ 1. Then

|Ex,y,z,w f(x, y, z)g(x, y, w)h(x, z, w)k(y, z, w)|
≤ min{‖f‖U3 , ‖g‖U3 , ‖h‖U3 , ‖k‖U3}.

Proof. We repeatedly apply the Cauchy�Schwarz inequality,

LHS8 = |Ey,z,w k(y, z, w) Ex f(x, y, z)g(x, y, w)h(x, z, w)|8

≤
((

Ey,z,w|k(y, z, w)|2
) (

Ey,z,w|Ex f(x, y, z)g(x, y, w)h(x, z, w)|2
))4

≤
(
Ex,x′ Ey,z,w fx,x′(y, z)gx,x′(y, w)hx,x′(z, w)

)4
where fx,x′(y, z) is shorthand for f(x, y, z)f(x′, y, z) etc.

≤ Ex,x′ |Ey,z,w fx,x′(y, z)gx,x′(y, w)hx,x′(z, w)|4
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≤ Ex,x′
(
Ez,w|Ey fx,x′(y, z)gx,x′(y, w)|2

)2
= Ex,x′

(
Ey,y′ Ez,w fx,x′,y,y′(z)gx,x′,y,y′(w)

)2
where fx,x′,y,y′(z) = fx,x′(y, z)fx,x′(y′, z),

≤ Ex,x′,y,y′ |Ez,w fx,x′,y,y′(z)gx,x′,y,y′(w)|2

≤ Ex,x′,y,y′ Ew|Ez fx,x′,y,y′(z)|2

= ‖f‖8
U3
.

The same works for the other three functions, so the result is proved.

Corollary 4.9. Let G be a group such that no element has order divisible by 2 or 3.
Let f, g, h, k : G→ C with ‖f‖∞, ‖g‖∞, ‖h‖∞, ‖k‖∞ ≤ 1. Then

|Ex,d f(x)g(x+ d)h(x+ 2d)k(x+ 3d)| ≤ min{‖f‖U3 , ‖g‖U3 , ‖h‖U3 , ‖k‖U3}.

Proof. The left-hand side can be written as

|Ex,y,z,w f(−y − 2z − 3w)g(x− z − 2w)h(2x+ y − w)k(3x+ 2y + z)|

By Lemma 4.8 and Lemma 4.6, this is at most

min{‖f‖U3 , ‖g‖U3 , ‖h‖U3 , ‖k‖U3}

as claimed.

De�nition. Let G be a �nite Abelian group and let f : G → C be a function with

‖f‖∞ ≤ 1. Then f is c-quadratically uniform if ‖f‖8
U3

≤ c. Let A ⊂ G be a subset of

density δ. Then A is c-quadratically uniform if the function fA = A−δ is c-quadratically
uniform.

Corollary 4.10. Let A,B,C,D ⊂ G, where G is a group with no elements of order 2
or 3, be sets of density α, β, γ, δ, respectively. Suppose that A and B are c-quadratically
uniform. Then

Ex,dA(x)B(x+ d)C(x+ 2d)D(x+ 3d) ≥ αβγδ − 5c1/8.

Proof. The left-hand side can be written as

Ex,d(α+ fA(x))(β + fB(x+ d))(γ + fC(x+ 2d))(δ + fD(x+ 3d)).

There are 16 terms. The main term is αβγδ. Any other term is zero unless you choose

f from at least 3 brackets. These terms involve either fA or fB, and therefore, by

Corollary 4.9, each have magnitude at most c1/8. There are 5 such terms.



Chapter 5

Functions and Sets that are not Quadratically Uniform

Notation. Let f : G→ C and let k ∈ G. Then de�ne

∆(f ; k) : G→ C, x 7→ f(x)f(x− k).

Proposition 5.1. Let f : G→ C be a function such that ‖f‖∞ ≤ 1. Then the following

are equivalent.

(i) f is not c1-quadratically uniform.

(ii) Ek∈G
∑

ψ∈Ĝ
∣∣∆(f ; k)̂ (ψ)

∣∣4 > c1.

(iii) Ek∈G maxψ∈Ĝ
∣∣∆(f ; k)̂ (ψ)

∣∣2 > c2.

(iv) There exist B ⊂ G with |B| > c3 and ψ : B → Ĝ such that∣∣∆(f ; k)̂ (ψ(k))
∣∣2 > c3

for every k ∈ B.

Proof. We have that

‖f‖8
U3

= Ex,k,a,b f(x)f(x+ a)f(x+ b)f(x+ a+ b)

f(x− k)f(x− k + a)f(x− k + b)f(x− k + a+ b)

= Ex,k,a,b ∆(f ; k)(x)∆(f ; k)(x+ a)∆(f ; k)(x+ b)∆(f ; k)(x+ a+ b)

= Ek‖∆(f ; k)̂ ‖4
4

= Ek
∑
ψ

∣∣∆(f ; k)̂ (ψ)
∣∣4

using Lemma 4.1. Thus (i) ⇐⇒ (ii).

Also,

Ek
∑
ψ

∣∣∆(f ; k)̂ (ψ)
∣∣4 ≤ Ek max

ψ

∣∣∆(f ; k)̂ (ψ)
∣∣2∑

ψ

∣∣∆(f ; k)̂ (ψ)
∣∣2

≤ Ek max
ψ

∣∣∆(f ; k)̂ (ψ)
∣∣2

since ‖∆(f ; k)‖2
2 ≤ 1. Thus, (ii) implies (iii) with c2 = c1.

If (iii) holds then there must be a set B of density greater than c2/2 such that

maxψ|∆(f ; k)̂ (ψ)|2 > c2/2 for every k ∈ B. For each k ∈ B, let ψ(k) be a ψ where the

maximum is attained.
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If (iv) holds then

Ek∈G
∑
ψ∈Ĝ

∣∣∆(f ; k)̂ (ψ)
∣∣4 ≥ Ek∈GB(k)

∣∣∆(f ; k)̂ (ψ(k))
∣∣4 > c33.

Lemma 5.2. Let λ : G× Ĝ→ C be a function. Let f : G→ C be a function such that

‖f‖∞ ≤ 1. Then ∣∣∣Ek∈G∑
ψ∈Ĝ

λ(k, ψ)
∣∣∆(f ; k)̂ (ψ)

∣∣2∣∣∣4 ≤ ‖λ‖4
U2

where ‖λ‖4
U2

means

Ek1+k2=k3+k4

∑
ψ1+ψ2=ψ3+ψ4

λ(k1, ψ1)λ(k2, ψ2)λ(k3, ψ3)λ(k4, ψ4).

In particular, if B ⊂ G and ψ : B → Ĝ is such that

Ek B(k)
∣∣∆(f ; k)̂ (ψ(k))

∣∣2 ≥ c

then there are at least c4|G|3 quadruples k1+k2 = k3+k4 in B such that ψ(k1)+ψ(k2) =
ψ(k3) + ψ(k4). This follows from applying the lemma to

λ(k, ψ) =

{
1 k ∈ B, ψ = ψ(k)
0 otherwise

.

Proof. The left-hand side can be written as∣∣∣Ek∑
ψ

λ(k, ψ)|Ex,y f(x)f(x− k)f(y)f(y − k)ψ(x− y)|
∣∣∣4

=
∣∣∣Ek∑

ψ

λ(k, ψ) Ex,u f(x)f(x− k)f(x− u)f(x− u− k)ψ(u)
∣∣∣4

=
∣∣∣Eu,x f(x)f(x− u) Ek f(x− k)f(x− u− k)

∑
ψ

λ(k, ψ)ψ(u)
∣∣∣4

≤
(

Eu Ex
∣∣∣Ek f(x− k)f(x− u− k)

∑
ψ

λ(k, ψ)ψ(u)
∣∣∣2)2

by Cauchy�Schwarz and ‖f‖∞ ≤ 1. Let fu(s) = f(s)f(s− u), gu(s) =
∑

ψ λ(s, ψ)ψ(u).
Then this is

=
(

Eu Ex
∣∣∣Ek fu(x− k)gu(k)

∣∣∣2)2

=
(
Eu Ex|fu ∗ gu(x)|2

)2
=
(

Eu
∑
φ

|f̂u(φ)|2|ĝu(φ)|2
)2
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by Parseval and the convolution identity

≤

(
Eu
(∑

φ

|f̂u(φ)|4
)1/2(∑

φ

|ĝu(φ)|4
)1/2

)2

using Cauchy�Schwarz. But
∑

φ|f̂u(φ)|4 = ‖fu‖4
U2
≤ ‖f‖4

∞ ≤ 1, so this is at most

≤

(
Eu
(∑

φ

|ĝu(φ)|4
)1/2

)2

≤ Eu
∑
φ

|ĝu(φ)|4

= Eu‖gu‖4
U2

= Eu Ex1+x2=x3+x4

∑
ψ1,ψ2,ψ3,ψ4

λ(x1, ψ1)λ(x2, ψ2)λ(x3, ψ3)λ(x4, ψ4)

× ψ1(u)ψ2(u)ψ3(u)ψ4(u)

= Ex1+x2=x3+x4

∑
ψ1ψ2=ψ3ψ4

λ(x1, ψ1)λ(x2, ψ2)λ(x3, ψ3)λ(x4, ψ4).

This makes us interested in the following question. Let G be a �nite Abelian group,

B < G, |B| = β, ψ : B → H, where H is some other Abelian group, and suppose

there are at least c|G|3 quadruples (x, y, z, w) ∈ B4 such that x + y = z + w and

ψ(x) + ψ(y) = ψ(z) + ψ(w). What can we say about ψ? Our main case of interest will

be G = H = ZN .

Lemma 5.3. Let G be a bipartite graph with �nite vertex setsX,Y and density δ. Then
X has a subset X ′ of density at least 1

2δ
5 such that at least 15

16 |X
′|2 pairs (x, x′) ∈ X ′×X ′

have neighbourhoods that intersect in a set of density at least 1
2δ

2.

Proof. Let us write d(x) for the density of the neighbourhood Γ(x) of x and d(x, x′) for
the density of Γ(x) ∩ Γ(x′). Let y1, . . . , y5 be chosen independently at random from Y
and set

X ′ = Γ(y1) ∩ · · · ∩ Γ(y5) = {x : xyi is an edge for i = 1, . . . , 5}.
Note for all x ∈ X we have P(x ∈ X ′) = d(x)5, and for each (x, x′) ∈ X × X the

probability that (x, x′) ∈ X ′ ×X ′ is d(x, x′)5. So the expected density of X ′ is Ex d(x)5
and so the expectation of the square of the density of X ′ is at least(

Ex d(x)5
)2 ≥ (Ex d(x))10 = δ10

by Hölder's inequality.

Call a pair (x, x′) ∈ X ×X bad if d(x, x′) < 1
2δ

2. Let (x, x′) be a bad pair. Then

P[(x, x′) ∈ X ′ ×X ′] <
1
32
δ10.

So the expected density of bad pairs in X ′×X ′, i.e., the number of bad pairs in X ′×X ′

divided by |X|2, is less than 1
32δ

10. Therefore,

E
[
|X ′|2 − 16× (bad pair in X ′ ×X ′ density)

]
≥ δ10 − δ10

2
=
δ10

2
.
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In particular, there exist a choice of y1, . . . , y5 such that the proportion of bad pairs in

X ′ ×X ′ is at most 1
16 and |X ′|2 ≥ 1

2δ
10, hence |X ′| ≥ 1

2δ
5.

De�nition. Let G be a bipartite graph with �nite vertex sets X and Y , let m be an

even integer, and let x, x′ ∈ X. Then the path density dm(x, x′) is the number of paths
in G of length m from x to x′ divided by |X|m/2−1|Y |m/2.
Equivalently, it is the probability that xy1x2y2 . . . ym/2x

′ is a path in G if x2, . . . , xm/2,
y1, . . . , ym/2 are chosen randomly.

Corollary 5.4. Let G be a bipartite graph with �nite vertex sets X and Y and density

δ. Then X has a subset X ′′ of density at least 1
4δ

5 such that d4(x, x′) ≥ 1
16δ

9 for every

x, x′ ∈ X ′′.

Proof. Let X ′ be given by Lemma 5.3. So |X ′| ≥ 1
2δ

5 and d2(x, x′) ≥ 1
2δ

2 for at least
15
16 |X

′|2 pairs in X ′ ×X ′.

De�ne a graph H with vertex set X ′ by joining x to x′ if d2(x, x′) ≥ 1
2δ

2. Then the

average degree is at least 15
16 |X

′|.
So at least half the vertices have degree at least 7

8 |X
′|. Let X ′′ be the set of all such

vertices. If x, x′ ∈ X ′′ then there must be at least 3
4 |X

′| vertices z such that d2(x, z) ≥
1
2δ

2 and d2(z, x′) ≥ 1
2δ

2. This implies that d4(x, x′) ≥ 3
4

1
2δ

5 1
2δ

2 1
2δ

2 ≥ 1
16δ

9.

Theorem 5.5 (Balog�Szemerédi). Let Γ be an Abelian group and let A be a �nite

subset of Γ. Let |A| = n, and suppose A4 contains at least cn3 quadruples (a, b, c, d)
such that a − b = c − d. Then there is a subset B ⊂ A of cardinality at least c′n such

that |B −B| ≤ Cn. Here, c′ and C depend only on c and B −B = {x− y : x, y ∈ B}.

Proof. For each x ∈ Γ let f(x) be the number of ways of writing x as a−b with a, b ∈ A,
i.e., f(x) is proportional to A ∗ (−A)(x). Then f(x) ≥ 1

2cn for at least 1
2cn values of x,

since, by hypothesis, ∑
x

f(x)2 ≥ cn3

and otherwise we would have∑
x

f(x)2 < max
x

f(x)2 · cn
2

+
cn

2

∑
x

f(x) ≤ cn3

2
+
cn3

2
= cn3.

De�ne a bipartite graph G with vertex sets A and A, by joining a to b if f(b−a) ≥ 1
2cn.

We call this the popular di�erence graph. Then the number of edges in G is at least
1
4c

2n2, so G has density at least 1
4c

2.

By Corollary 5.4 we can �nd B ⊂ A such that d4(x, x′) ≥ 1
222 c

18 for every x, x′ ∈ B and

|B| ≥ c10

212 |A|.
Let x ∈ B −B. Then we can write x = b1 − b2 with b1, b2 ∈ B. But d4(b1, b2) ≥ 1

222 c
18,

so the number of triples u1, u2, u3 such that

d2(b1, u1), d2(u1, u2), d2(u2, u3), d2(u3, b2) ≥
c

2

is at least 1
222 c

18n3. For each choice of u1, u2, u3 there are at least
(

1
2cn
)4

ways of

writing b1 − u1 = a1 − a2, u1 − u2 = a3 − a4, u2 − u3 = a5 − a6, u3 − b2 = a7 − a8
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with a1, . . . , a8 ∈ A. This gives us 1
222 c

18n3
(

1
2cn
)4 = 1

226 c
22n7 distinct ways of writing

x = a1 − a2 + a3 − a4 + a5 − a6 + a7 − a8 with a1, . . . , a8 ∈ A.
Di�erent x ∈ B −B must produce di�erent (a1, . . . , a8) so

|B −B| 1
226

c22n7 ≤ n8

and hence

|B −B| ≤ 226c−22n.

Note we have found |B| ≥ 1
212 c

10n.

Lemma 5.6 (Ruzsa Triangle Inequality). Let U, V,W be �nite subsets of an Abelian

group. Then

|U ||V −W | ≤ |U − V ||U −W |.

Proof. De�ne functions v : V − W → V and w : V − W → W in such a way that

v(x) − w(x) = x for every x ∈ V −W . Then de�ne a function φ : U × (V −W ) →
(U − V )× (U −W ) by φ : (u, x) 7→ (u− v(x), u− w(x)). This is an injection since

(u− w(x))− (u− v(x)) = v(x)− w(x) = x

so we can recover x, and hence v(x) and w(x), and hence u, all from (u−v(x), u−w(x)) =
φ(u, x).

Lemma 5.7. Let Γ be an Abelian group and let A be a �nite subset such that |A−A| ≤
C|A|. Then |2A− 2A| ≤ 8C6|A|.

It is known that |kA− lA| ≤ Ck+l|A|.

Proof. Let f(x) be the number of ways of writing x = a − b with a, b ∈ A, which is

proportional to A ∗ −A(x). Then

f(x) ≥ |A|
2C

for at least |A|/2 values of x, or else we would have

|A|2 =
∑
x∈Γ

f(x) <
|A|
2

max
x∈Γ

f(x) + |A−A| |A|
2C

≤ |A|
2
|A|+ C|A| |A|

2C
= |A|2,

contradiction. Let

S =
{
x : f(x) ≥ |A|

2C

}
.

We claim that

|A−A+ S| ≤ 2C3|A|.

To show this, we shall de�ne a (multi-valued) map from A−A+S to (A−A)× (A−A)
as follows. For each x = a1 − a2 + s, we can write s as a3 − a4 in at least |A|/2C ways,

and send it to (a1 − a4, a2 − a3). Each of those images of x is distinct, and from it we

can recover x = (a1 − a4)− (a2 − a3). It follows that

|A|
2C

|A−A+ S| ≤ |A−A|2 ≤ C2|A|2



26 Functions and Sets that are not Quadratically Uniform

which proves the claim.

By the Ruzsa triangle inequality,

|S||2A− 2A| ≤ |A−A+ S|2

since this is

|S||(A−A)− (A−A)| ≤ |S − (A−A)||S − (A−A)|.

Thus

|2A− 2A| ≤ 4C6|A|2

|A|/2
= 8C6|A|.

De�nition. Let A be a subset of an Abelian group and let B be another one. A function

φ : A→ B is a (Freiman) homomorphism of order k if

x1 + · · ·+ xk = y1 + · · ·+ yk

=⇒ φ(x1) + · · ·+ φ(xk) = φ(y1) + · · ·+ φ(yk).

It is an isomorphism if it is a bijective homomorphism and the above implication can

be reversed.

Lemma 5.8. If φ is a Freiman homomorphism from a set A to a set B then φ induces

a well-de�ned map ψ : A − A → B − B with formula ψ(x − y) = φ(x) − φ(y). More

generally, if φ is a homomorphism of order 2k then we can de�ne ψ : kA−kA→ kB−kB
by

ψ(x1 + · · ·+ xk − y1 − · · · − yk) = φ(x1) + · · ·+ φ(xk)− φ(y1)− · · · − φ(yk).

Also, a homomorphism of order 2k on A induces a homomorphism of order k on A−A.

Proof. These statements are all easy exercises. We prove the third one. If φ : A→ B is a

homomorphism of order 2k and we de�ne ψ : A−A→ B−B by ψ(x− y) = φ(x)−φ(y)
then

x1 − y1 + · · ·+ xk − yk = u1 − v1 + · · ·+ uk − vk

=⇒ x1 + · · ·+ xk + v1 + · · ·+ vk = y1 + · · ·+ yk + u1 + · · ·+ uk

=⇒ φ(x1) + · · ·+ φ(xk) + φ(v1) + · · ·+ φ(vk)
= φ(y1) + · · ·+ φ(yk) + φ(u1) + · · ·+ φ(uk)

=⇒ ψ(x1 − y1) + · · ·+ ψ(xk − yk) = ψ(u1 − v1) + · · ·+ ψ(uk − vk).

Lemma 5.9. Let A ⊂ G, |A−A| ≤ C|A|. Then

|9A− 8A| ≤ 224C48|A|.

Proof. By Ruzsa's triangle inequality,

|A||(2k + 1)A− (2k + 1)A| = |A|
∣∣((2k−1 + 1)A− 2k−1A

)
−
(
(2k−1 + 1)A− 2k−1A

)∣∣
≤ |(2k−1 + 1)A− (2k−1 + 1)A|2
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if k ≥ 1. Therefore,
|9A− 9A|

|A|
≤
(
|2A− 2A|

|A|

)8

≤ (8C6)8

by Lemma 5.7. Therefore,

|9A− 8A| ≤ (8C6)8|A|,

as in general |A+B| ≥ |A|.

Lemma 5.10. Let B be a subset of ZN and let φ : B → ẐN . Let Γ be the graph of

φ. Suppose that |9Γ − 8Γ| ≤ K|Γ|, viewing Γ as a group with (x, φ(x)) − (y, φ(y)) =
(x− y, φ(x)−φ(y)). Then there is a subset B′ ⊂ B of cardinality at least |B|/16K such

that the restriction of φ to B′ is a Freiman homomorphism of order 8.

Proof. Let B′ ⊂ B. If the result is false for B′, then we can �nd x1, . . . , x8 and y1, . . . , y8

in B′ such that

x1 + · · ·+ x8 = y1 + · · ·+ y8

but

φ(x1) + · · ·+ φ(x8) 6= φ(y1) + · · ·+ φ(y8).

Let Y be the set of all φ(x1) + · · ·+φ(x8)−φ(y1)− · · · −φ(y8) such that x1, . . . , x8 and

y1, . . . , y8 are in B and satisfy

x1 + · · ·+ x8 = y1 + · · ·+ y8.

Then {0} × Y ⊂ 8Γ− 8Γ. Therefore,

Γ + ({0} × Y ) ⊂ 9Γ− 8Γ.

But

|Γ + ({0} × Y )| = |Γ||Y |

and

|9Γ− 8Γ| ≤ K|Γ|

so |Y | ≤ K.

Let P = {1, . . . ,m}, and let r 6= 0 and s be random elements of ZN . Choose B′ randomly

to be

{x ∈ B : φ(x) ∈ r · P + s}

where

r · P + s = {r + s, 2r + s, . . . ,mr + s}.

If 8(r · P + s)− 8(r · P + s) ∩ Y = {0} then φ|B′ is a homomorphism of order 8. But

8(r · P + s)− 8(r · P + s) = 8r · P − 8r · P ⊂ Y ∩ [−8(m− 1), 8(m− 1)]
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so each non-zero element of Y has probability at most

16(m− 1)
N − 1

≤ 16m
N

.

Therefore, as long as 16m(|Y |−1)/N < 1 the intersection is {0} with positive probability.
So choose m = dN/16Ke, and pick r such that the intersection is {0}. Now choose s
such that

|B′| ≥ |B| · m
N

≥ |B|
16K

which is possible by an easy averaging argument.



Chapter 6

Bohr Neighbourhoods

Let G be a �nite Abelian group. Let ψ1, . . . , ψk be characters, let K = {ψ1, . . . , ψk} and
let δ > 0. The Bohr set B(K, δ) is de�ned to be

{x ∈ G : |ψi(x)− 1| ≤ δ for i = 1, . . . , k}.

We call k the dimension of the Bohr set and δ is the radius.

Lemma 6.1. The density of B(K, δ) is at least (δ/2π)k.

Proof. Let Π = {z ∈ C : |z| = 1}. Pick z = (eiθ1 , . . . , eiθk) at random in Πk and look at

Uz = {x ∈ G : θi ≤ argψi(x) < θi + δ for all i}.

Then the probability that x ∈ Uz is (δ/2π)k so we can �nd z such that Uz has density
at least (δ/2π)k. But then if x, y ∈ Uz then ψi(x− y) has argument between −δ/2π and

δ/2π so |ψi(x− y)− 1| ≤ δ. So Uz − Uz ⊂ B(K, δ), so |B(K, δ)| ≥ (δ/2π)k.

Corollary 6.2. The Bohr set B(K, δ) in ZN contains an arithmetic progression of length

cδN1/|K|.

Proof. By Lemma 6.1,

|B(K, η)| ≥
( η

2π

)|K|
.

So as long as that is greater than N−1, B(K, η) contains a non-zero element x. By the

triangle inequality, rx ∈ B(K, |r|η) as

|ψi(rx)− 1| ≤ |ψi(rx)− ψi((r − 1)x)|+ · · ·+ |ψi(x)− 1| ≤ r|ψi(x)− 1|.

So if 0 < r ≤ δ/η then the progression {−rx,−(r − 1)x, . . . , (r − 1)x, rx} is a subset of

B(K, δ). But for (η/2π)|K| > N−1 we need η > 2πN−1/|K|, so this gives a progression

of length at least 1
2π δN

1/|K|.

Lemma 6.3 (Bogolyubov's Method). Let G be a �nite Abelian group and let A ⊂ G
be a set of density δ. Then 2A− 2A contains a Bohr set B(K,

√
2) with |K| ≤ δ−2.

Proof. For each x ∈ G, let f(x) = A ∗A ∗ (−A) ∗ (−A)(x), which is proportional to the

number of ways of writing x = a1 + a2− a3− a4 with ai ∈ A. Then f(x) 6= 0 if and only

if x ∈ 2A− 2A.
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Also, by the convolution and inversion formulae

f(x) =
∑
ψ

|Â(ψ)|4ψ(x).

Let K = {ψ : |Â(ψ)| ≥ δ3/2}. Then

δ3|K| ≤
∑
ψ

|Â(ψ)|2 = ‖A‖2
2 = δ

so |K| ≤ δ−2. Now

f(x) = |Â(0)|4 +
∑

ψ∈K\{0}

|Â(ψ)|4ψ(x) +
∑
ψ 6∈K

|Â(ψ)|4ψ(x)

and |Â(0)|4 = δ4. If x ∈ B(K,
√

2) then |ψ(x)− 1| ≤
√

2 for each ψ ∈ K so <ψ(x) ≥ 0
as |ψ(x)| = 1. Therefore,

<

( ∑
ψ∈K\{0}

|Â(ψ)|4ψ(x)

)
≥ 0

for x ∈ B(K,
√

2).∣∣∣∑
ψ 6∈K

|Â(ψ)|4ψ(x)
∣∣∣ ≤ max

ψ 6∈K
|Â(ψ)|2

∑
ψ

|Â(ψ)|2 < δ3 · δ = δ4.

Therefore, <f(x) > 0, which implies f(x) 6= 0 and hence x ∈ 2A− 2A.
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Szemerédi's Theorem for Progressions of Length 4

Lemma 7.1. Let f : ZN → C with ‖f‖∞ ≤ 1 and let P be an arithmetic progression

modulo N . Suppose that

Ek∈P |∆(f ; k)̂ (2λk + µ)|2 ≥ c.

Then for each x ∈ ZN we can �nd a quadratic polynomial qx in such a way that

Ex∈ZN
|Es∈P+P f(x− s)ωqx(s)| > c′

where c′ depends polynomially on c, and ωqx(s) = e(qx(s)/N).

Proof. The left-hand side of the hypothesis equals

Ek∈P Ex,y f(x)f(x− k)f(y)f(y − k)ω(2λk+µ)(x−y)

= Ex,u Ek∈P f(x)f(x− k)f(x− u)f(x− u− k)ω(2λk+µ)u.

Now 2λku = λ(x2 − (x − k)2 − (x − u)2 + (x − k − u)2) and µu = µ(x − (x − u)). So
this equals

Ex,u Ek∈P g1(x)g2(x− k)g3(x− u)g4(x− k − u)

where g1(x) = g3(x) = f(x)ωλx
2+µx and g2(x) = g4(x) = ωλx

2
f(x). On substituting

u = z + v with z ∈ ZN and v ∈ P , this equals

Ex,z Ek,v∈P g1(x)g2(x− k)g3(x− z − v)g4(x− z − v − k).

Therefore, there exists z such that

c ≤ |Ex Ek,v∈P g1(x)g2(x− k)g3(x− z − v)g4(x− z − v − k)|
≤ Ex|Ek,v∈P h2(x− k)h3(x− v)h4(x− v − k)|

where h2 = g2, h3(x) = g3(x − z), and h4(x) = g4(x − z). Thus there exists a z such

that

c ≤ Ex|Ek,v∈P h2(x− k)h3(x− v)h4(x− v − k)|

= Ex
N2

|P |2
|Ek,v∈ZN

Hx
2 (k)Hx

3 (v)Hx
4 (k + v)|
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where Hx
2 (k) = P (k)h2(x− k), Hx

3 (v) = P (v)h3(x− v), Hx
4 (s) = (P + P )(s)h4(x− s).

Hence

=
N2

|P |2
Ex〈Hx

4 ,H
x
2 ∗Hx

3 〉

=
N2

|P |2
Ex
∑
r

Ĥx
4 (r)Ĥx

2 (r)Ĥx
3 (r)

≤ N2

|P |2
Ex max

r
|Ĥx

4 (r)|‖Ĥx
2 ‖2‖Ĥx

3 ‖2

=
N2

|P |2
Ex max

r
|Ĥx

4 (r)|‖Hx
2 ‖2‖Hx

3 ‖2

≤ N

|P |
Ex max

r
|Ĥx

4 (r)|.

Therefore, for each x we can pick rx so that

N

|P |
Ex|EsHx

4 (s)ωrxs| ≥ c

=⇒ N

|P |
Ex

|P + P |
N

|Es∈P+P h4(x− s)ωrxs| ≥ c

=⇒ Ex|Es∈P+P g4(x− z − s)ωrxs| ≥ c

2
=⇒ Ex|Es∈P+P f(x− z − s)ωλ(x−z−s)2+rxs| ≥ c

2
=⇒ Ex|Es∈P+P f(x− s)ωλ(x−s)2+rx+zs| ≥ c

2
.

Since λ(x− s)2 + rx+zs is quadratic in s, we are done.

Corollary 7.2. Under the assumptions of Lemma 7.1, we can �nd a collection of pro-

gressions Pi of size at least a|P |b with b and absolute constant and a = a(c) such that

Ex∈Pi f(x) ≥ 1
8c.

Proof. Let Q = P + P . Then we have quadratics qx such that

Ex|Es∈x−Q f(s)ωqx(s)| ≥ c

2
.

By an earlier lemma, we can partition each x−Q into progressions Pi,x of size at least

a(c)|Q|b such that diamωqx(Pi,x) ≤ 1
4c for each Pi,x. So

c

2
≤ Ex|Es∈x−Q f(x)ωqx(s)|

≤ Ex
∑
i

|Pi,x|
|x−Q|

∣∣Es∈Pi,x f(s)ωqx(s)
∣∣

≤ Ex
∑
i

|Pi,x|
|Q|

∣∣Es∈Pi,x f(s)ωqx(si,x)
∣∣

+ Ex
∑
i

|Pi,x|
|Q|

∣∣∣Es∈Pi,x f(s)
(
ωqx(s) − ωqx(si,x)

)∣∣∣
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where si,x is an arbitrary element of Pi,x, and hence

≤ Ex
∑
i

|Pi,x|
|Q|

|Es∈Pi,x f(s)|+ c

4
.

Also,

Ex
∑
i

|Pi,x|
|Q|

Es∈Pi,x f(s) = Ex Es∈x−Q f(s) = Es f(s) = 0.

Therefore,

Ex
∑
i

|Pi,x|
|Q|

(
|Es∈Pi,x f(s)|+ Es∈Pi,x f(s)

)
≥ c

4

so there exists x and i such that

|Es∈Pi,x f(s)|+ Es∈Pi,x f(s) ≥ c

4

because
∑

i|Pi,x|/|Q| = 1 for every x. Hence

Es∈Pi,x f(s) ≥ c

8
.

Convention. c1, c2, . . . is a sequence of constants, each with a power-type dependence

on the previous one. Further, let c−1
i = Ci.

Theorem 7.3 (Szemerédi's Theorem for Progressions of Length 4). For every δ > 0
there exists N such that every subset A of {1, . . . , N} of density at least δ contains an
arithmetic progression of length 4.

Proof. (i) There exists c1 depending with power-type on δ such that if A is c1-
quadratically uniform then A contains an arithmetic progression of length 4.

(ii) If A is non-c1-quadratically uniform, let f = A− δ. Then there exists B ⊂ ZN of

density at least c2 and a function φ : B → ẐN such that |∆(f ; k)̂ (φ(k))| ≥ c2 for

every k ∈ B.

(iii) There are at least c3N
3 quadruples x + y = z + w in B such that φ(x) + φ(y) =

φ(z) + φ(w).

(iv) Let Γ be the graph of φ. Then Γ has a subset Γ′ of size at least c4N such that

|Γ′ − Γ′| ≤ C4|Γ|.

(v) Therefore, |9Γ′ − 8Γ′| ≤ C5|Γ′|.

(vi) Γ′ has a subset Γ′′, the graph of φ|B′′ , such that φ|B′′ is a homomorphism of order

8 and B′′ has density at least c6.

(vii) There is a set K of size at most C7 = c−2
6 such that 2B′′ − 2B′′ contains the Bohr

neighbourhood B(K,
√

2).
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(viii) B(K,
√

2) contains a progression P of length at least 1
10N

c7 . Also, if ψ is the

function induced by φ, that is,

ψ(a+ b− c− d) = φ(a) + φ(b)− φ(c)− φ(d)

whenever a, b, c, d ∈ B′′, then ψ is a homomorphism of order 2 on 2B′′− 2B′′, and
therefore, we can �nd λ, µ such that ψ(x) = 2λx + µ for every x ∈ P . Moreover,

P is centred at 0, clearly ψ(0) = 0 so µ = 0.

(ix) Writing P = r[−m,m] for some r it follows that if x, y ∈ B′′ with |r−1(x−y)| ≤ m
then

φ(x)− φ(y) = φ(x) + φ(x)− φ(x)− φ(y) = ψ(x− y) = 2λ(x− y)

since x− y ∈ P .
Letting Q = r[0,m] then we can �nd some translate R of Q such that |B′′ ∩R| ≥
c6|R| since the right-hand side is the average over all translates.

This gives us a translate R and λ, µ such that φ(x) is de�ned and equals 2λx+ µ
for at least c6|R| values of x ∈ R. This is because if x0 ∈ B′′ ∩ R then for all

x ∈ B′′ ∩R,

φ(x)− φ(x0) = 2λ(x− x0)
φ(x) = 2λx+ φ(x0)− 2λx0 = 2λx+ µ.

(x) But Lemma 7.1 applied to A − δ then tells us that there exists some progression

S of size at least N c8 such that |A ∩ S| ≥ (c9 + δ)|S|. To see that the hypotheses

hold, use the fact that |∆(f ; k)̂ (2λk + µ)| ≥ c2 for at least c6|R| values of R.

(xi) Hence, by a Roth-style iteration, the theorem is proved.

The bound that results is that a density of C11(log logN)−c10 is su�cient to guarantee

a progression of length 4.



Appendix A

Annotations

This chapter contains various annotations to the original lecture notes, which I found

useful during revision in Lent term 2008. They range from stating and expanding the

obvious to explanations of special cases omitted in lectures. Some of this work is due to

Victor Falgas�Ravry and Paul Je�erys.

A.1 Annotations to Chapter 1

A.1.1 Lemma 1.1, Product of distinct characters

We claim that if ψ, χ are distinct characters on a �nite Abelian group G then φ = ψχ̄
is a non-trivial character.

It is clear that φ is a character. Suppose φ is trivial. Then for all g ∈ G

(ψχ̄)(g) = 1

=⇒ ψ(g) = χ̄(g)−1

=⇒ ψ(g) = (χ(g)−1)−1 = χ(g)

as z̄ = z−1 for all z ∈ C on the unit circle.

A.1.2 Proposition 1.3, Φ is a homomorphism

We claim that the map Φ: G→ ˆ̂
G, x 7→ δx is a homomorphism.

Since ψ is a homomorphism we have

Φ(x+ y)(ψ) = δx+y(ψ) = ψ(x+ y) = ψ(x)ψ(y) = δx(ψ)δy(ψ)
= Φ(x)(ψ)Φ(y)(ψ).

A.1.3 Proposition 1.3, Ĝ separates elements of G

We claim that if x 6= y then there exists ψ ∈ Ĝ with ψ(x) 6= ψ(y).

Suppose not. Let M be the |Ĝ| × |G| matrix with rows indexed by Ĝ and columns

indexed by G such that the entry at position (χ, z) is χ(z). By assumption, columns x
and y are identical and hence rankM < |G|, contradicting the linear independence of

characters.
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A.1.4 Note following Proposition 1.4,
∑

ψ|Â(ψ)|2 = Ex|A(x)|2

We claim
∑

ψ|Â(ψ)|2 = Ex|A(x)|2.

As a preliminary observation, recall that for x 6= y in G there exists φ ∈ Ĝ with

φ(x− y) 6= 1, so∑
ψ

ψ(x− y) =
∑
ψ

(φψ)(x− y) = φ(x− y)
∑
ψ

ψ(x− y)

implying
∑

ψ ψ(x− y) = 0. Now∑
ψ

|Â(ψ)|2 =
∑
ψ

ExA(x)ψ(x) Ey A(y)ψ(y)

= Ex,y A(x)A(y)
∑
ψ

ψ(x− y)

= ExA(x)
1
|G|

∑
y

A(y)
∑
ψ

ψ(x− y)

= ExA(x)
1
|G|

A(x)|G|

= Ex|A(x)|2

as desired.

A.1.5 Theorem 1.5, Reformulation of claim

Let A ⊂ Fn3 . We claim there exists {x, x+ d, x+ 2d} ⊂ A for some d 6= 0 if and only if

there exist x, y, z not all equal with x+ y + z = 0.

Given x, x + d, x + 2d note these are distinct as d 6= 0 and x + (x + d) + (x + 2d) =
3x+ 3d = 0. Conversely, suppose x+ y + z = 0. With d = y − x we have z = −x− y =
2x+ 2y = 2x+ 2x+ 2d = x+ 2d, and d 6= 0 as x 6= y.

A.1.6 Theorem 1.5, Existence condition

We claim A contains such a triple as long as Ex+y+z=0A(x)A(y)A(z) > 3−n. To see

this, note that

|{(x, y, z) : x = y = z and x+ y + z = 0}|
|{(x, y, z) : x+ y + z = 0}|

=
3n

3n · 3n
=

1
3n
.

A.1.7 Theorem 1.5, δ3/2 ≥ 256/n3 > 3−n

We check that δ3/2 ≥ 256/n3 > 3−n for all n ∈ N, where δ ≥ 8/n.

Note δ3/2 ≥ 4 · 64/n3 = 256/n3. Further 3n > n3/256 is true for all n ∈ N as it is true

for n = 1, 2, 3 and from then on, the left-hand side is multiplied by 3 each step but the

right-hand side is multipled by (n+ 1)3/n3 which for n ≥ 3 is at most 64/27 < 3.
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A.1.8 Theorem 1.5, Iterations

We count the number of steps in the iteration. Let δ = δ0 ≥ 8/n and note (δi)i∈N is

strictly increasing. We have

δi ≥
(

1 +
δi−1

4

)
δi−1 ≥ · · · ≥

(
1 +

δi−1

4

)
· · ·
(

1 +
δ0
4

)
δ0 ≥

(
1 +

δ0
4

)i
δ.

We claim that if i ≥ 4/δ then δi ≥ 2δ. It su�ces to show

(
1 +

δ

4

)4/δ

δ ≥ 2δ

⇐⇒ 1 +
δ

4
≥ 2δ/4.

We show that for all 0 < y ≤ 1 we have 1 + y ≥ 2y.

De�ne g : R → R, y 7→ 1 + y − 2y. Note g(0) = g(1) = 0 and g′(y) = 1 − (log 2)2y.
Now g′(y) ≥ 0 if and only if 1 ≥ (log 2)2y if and only if y ≤ − log log 2/ log 2. With

y∗ = − log log 2 ≈ 0.53, we see g is strictly increasing in [0, y∗] and strictly decreasing in

[y∗, 1], giving the desired result.

Finally, we sum the geometric series

4
δ

+
4
2δ

+
4
4δ

+ · · · = 4
δ

(
1 +

1
2

+
1
4

+ · · ·
)

=
8
δ
.

A.2 Annotations to Chapter 2

A.2.1 Lemma 2.2, |ψ(x+ d)− ψ(x)| ≤ 2π/k

We claim there exists d ∈ {1, . . . , k} such that |ψ(x+ d)−ψ(x)| ≤ 2π/k for all x ∈ ZN .

Suppose we have distinct i, j ∈ {0, . . . , k} such that |ψ(i)−ψ(j)| ≤ 2π/k. Assume i < j
and set x = i, d = j − i ∈ {1, . . . , k}. Then for all y ∈ ZN ,

|ψ(y + d)− ψ(y)| = |ψ(y − x)||ψ(x+ d)− ψ(x)| = |ψ(x+ d)− ψ(x)| ≤ 2π
k
.

A.2.2 Lemma 2.2, Partitioning into arithmetic progressions

The claim that we can partition a residue class modulo d into arithmetic progressions

of lengths between r/2 and r holds provided N/2k ≥ r/2. Since r/2 = εk/4π this is

equivalent to ε ≤ 2π.

Note this condition is essentially vacuous because in the case ε ≥ 2 we note that

diamψ(A) ≤ 2 for any set A ⊂ ZN .
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A.3 Annotations to Chapter 3

A.3.1 Theorem 3.1, Using Roth's theorem

By Roth's Theorem, there exists a constant C such that for N ∈ N and A ⊂ [N ] with
|A| ≥ CN/ log logN we know A contains a arithmetic progression of length 3.

Given ε > 0 choose k ∈ N such that

ε

8π
k ≥ Ck

log log k

that is, k ≥ ee
8πC/ε

. Then any subset A ⊂ [k] with density at least ε/8π has size at least

Ck/ log log k so contains an arithmetic progression of length 3 by Roth's Theorem.

A.3.2 Theorem 3.1, Pigeonhole principle on the circle

Suppose the unit circle is partitioned into at most 8π/ε sets each of diameter at most

ε/2. Now consider the distribution of e(αx2/2), x = 1, . . . , k, among the partitioning

sets. If each set contains fewer than εk/8π elements then the total number of elements,

which is k, is strictly less than

8π
ε

ε

8π
k = k,

a contradiction. Thus one such set contains e(αx2/2) for at least εk/8π values of x, and
we denote the set of such x by A.

A.3.3 Theorem 3.1, Distance from 1

Observe

ε

2
≥
∣∣∣e(α(x+ d)2

2

)
− e

(
αx2

2

)∣∣∣
=
∣∣∣e(αx2

2

)∣∣∣∣∣∣e(α(x+ d)2

2

)
e

(
−αx2

2

)
− 1
∣∣∣

=
∣∣∣e(α(x+ d)2

2

)
e

(
−αx2

2

)
− 1
∣∣∣

If we now consider two points eiθ1 , eiθ2 on the unit circle within ε/2 of 1, we �nd

|eiθ1eiθ2 − 1| = |eiθ2 ||eiθ1 − e−iθ2 | = |eiθ1 − e−iθ2 | = |eiθ1 − 1 + 1− e−iθ2 |
≤ |eiθ1 − 1||1− e−iθ2|

≤ ε

2
+
ε

2
= ε

as required.
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A.3.4 Lemma 3.2, |1− e(α)| ≥ 4‖α‖

We claim |1− e(α)| ≥ 4‖α‖ for all α ∈ R.

First note that both sides are only functions of the fractional part of α, so we may

assume α ∈ (−1/2, 1/2]. Further, both sides are invariant under changing α to −α.
Thus we may assume α ∈ [0, 1/2].

Let us write θ = 2πα, so θ ∈ [0, π]. As |1− e(α)|2 = 2− 2<e(α) = 2(1− cos θ) we have
to show 1 − cos θ ≥ 2θ2/π2. Using the series expansion of the cosine function, we �nd

that

1− cos θ − 2
θ2

π2
= 1−

∞∑
n=0

(−1)n
θ2n

(2n)!
− 2

θ2

π2

= θ2π
2 − 4
2π2

−
∞∑
n=2

(−1)n
θ2n

(2n)!

≥ θ2π
2 − 4
2π2

−
∞∑
n=2

θ4n

(4n)!

≥ θ2π
2 − 4
2π2

− θ2 1
π2

∞∑
n=2

π4n

(4n)!
.

We can sum the geometric series,

∞∑
n=2

π4n

(4n)!
≤ π8

8!
+
π12

12!
+

∞∑
n=4

(
π4

2000

)n
=
π8

8!
+
π12

12!
+

π16

20003 · (2000− π4)
.

It hence su�ces to show

π2 − 4
2π2

≥ π8

8!
+
π12

12!
+

π16

20003 · (2000− π4)
.

Finally, the approximation 3 < π < 16/5 gives the desired result.

A.3.5 Lemma 3.3, Properties of ‖·‖

We demonstrate some properties of the function ‖x‖ = |〈x〉|.
We �rst claim that ‖x‖ ≤ |x|. If |x| ≥ 1/2 then ‖x‖ = |〈x〉| ≤ 1/2 ≤ |x|. But if |x| < 1/2
then 〈x〉 = x and the result follows.

We also observe that ‖x‖ = ‖−x‖.
Our second claim is the triangle inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
Considering the range of ‖·‖, we are done if ‖x‖ or ‖y‖ is at least 1/2. Thus assume

‖x‖, ‖y‖ < 1/2. Similarly, we are done if both ‖x‖, ‖y‖ ≥ 1/4, so by symmetry we may

assume that ‖x‖ < 1/4. Writing x = [x] + 〈x〉, y = [y] + 〈y〉,

‖x+ y‖ = ‖[x] + 〈x〉+ [y] + 〈y〉‖ = ‖〈x〉+ 〈y〉‖

and so we may assume x, y ∈ (−1/2, 1/2]. Summarising, we now assume x ∈
(−1/4, 1/4), y ∈ (−1/2, 1/2) and aim to show ‖x + y‖ ≤ ‖x‖ + ‖y‖. Finally, note
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that this inequality is invariant under the transformation x 7→ −x, y 7→ −y, so we may

assume y ∈ [0, 1/2), and our inequality becomes

‖x+ y‖ ≤ |x|+ y.

Note that our assumptions ensure x + y ∈ (−1/4, 3/4). We consider two cases. If

x+ y ≤ 1/2 then

‖x+ y‖ = |x+ y| ≤ |x|+ |y| = |x|+ y.

Otherwise, if x+ y > 1/2 we know that x > 0 and so

‖x+ y‖ = |1− (x+ y)| < 1
2
< x+ y = |x|+ y.

A.3.6 Proof of Weyl's inequality

Lemma A.1. Let k ∈ N and r ∈ R with r > 0. For some 1 ≤ l ≤ k let x1, . . . , xl be
real numbers with ‖xi − xj‖ > 1/r for i 6= j. Suppose for all i = 1, . . . , l the fractional
part 〈xi〉 ∈ (−1/2, 1/2] has the same sign. Then

l∑
i=1

min
{

1
‖xi‖

, k

}
≤ k + r + r log(l − 1).

Proof. To prove this, we �rst observe that the statement is invariant under the trans-

formation (x1, . . . , xl) 7→ (−x1, . . . ,−xl) and we can further pass to fractional parts in

(−1/2, 1/2].

As all fractional parts have the same sign, we may assume that

0 ≤ x1 < · · · < xl ≤
1
2

and our hypothesis becomes xj − xi > 1/r for all i < j. Then

x1 ≥ 0, xi ≥
i− 1
r

for i = 2, . . . , l. We now bound the sum under consideration

l∑
i=1

min
{

1
‖xi‖

, k

}
≤ k +

l∑
i=2

1
‖xi‖

≤ k + r
l∑

i=2

1
i− 1

= k + r
l−1∑
i=1

1
i

= k + r + r
l−1∑
i=2

1
i

≤ k + r + r

∫ l−1

1

1
τ
dτ = k + r + r log(l − 1),

completing the proof.

Lemma A.2. Let k ∈ N and r ∈ R with r > 0. For some 2 ≤ l ≤ k let x1, . . . , xl
be real numbers with ‖xi − xj‖ > 1/r for i 6= j. Suppose not all fractional parts

〈xi〉 ∈ (−1/2, 1/2] for i = 1, . . . , l have the same sign. Then

l∑
i=1

min
{

1
‖xi‖

, k

}
≤ k + 4r + 2r log

l − 2
2

.
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Proof. Renaming the variables, we may assume

−1
2
≤ xm < · · · < x1 < 0 ≤ y1 < · · · < yn ≤

1
2

for some 1 ≤ m,n ≤ l − 1 with m + n = l, and where xj − xi > 1/r and yj − yi > 1/r
for all i < j, y1 − x1 > 1/r and |x1| ≥ 1/(2r). Then as before

|x1| ≥ 0, y1 ≥
1
2r

|xi| ≥
i− 1
r

, yj ≥
j − 1
r

for i = 2, . . . ,m and l = 2, . . . , n, and so

m∑
i=1

min
{

1
‖xi‖

, k

}
+

n∑
j=1

min
{

1
‖yi‖

, k

}

≤ k + 2r +
m∑
i=2

min
{

1
‖xi‖

, k

}
+

n∑
j=2

min
{

1
‖yi‖

, k

}

≤ k + 4r + r

∫ m−1

1

1
τ
dτ + r

∫ n−1

1

1
τ
dτ

= k + 4r + r log(m− 1) + r log(n− 1)

≤ k + 4r + 2r log
l − 2

2

as claimed.

In our case, we have r = 2q and l = bq/4c + 1 and there is an additional factor of 1/2
in all but the �rst summand. If all fractional parts have the same sign, we obtain

v+bq/4c∑
u=v

min
{
k,

1
2‖2αu‖

}
≤ k +

r

2
+
r

2
log(l − 1)

≤ k + q(1 + log q − log 4)
≤ k + q log q.

Otherwise,

v+bq/4c∑
u=v

min
{
k,

1
2‖2αu‖

}
≤ k + 2r +

r

2
+
r

2
+ r log

l − 2
2

≤ k + q
(
6 + log

bq/4c − 1
2

)
≤ k + q

(
6 + log

q − 4
8

)
≤ k + q

(
8 + 4 log

q − 4
8

)
.

We claim this is at most k + 4q log q. Indeed,

k + q
(
8 + 4 log

q − 4
8

)
≤ k + 4q log q
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⇐⇒ e2
q − 4

8
≤ q

⇐⇒ −e2

2
≤ 8− e2

8
q

which is true as e2 ≤ 8.

Combining the bounds for the partial sums, we obtain

2(k−1)∑
u=0

min
{
k,

1
2‖2αu‖

}
≤
⌈

2(k − 1) + 1
bq/4c+ 1

⌉
(k + 4q log q)

≤
⌈

2k
q/4

⌉
(k + 4q log q)

≤ 16k
q

(k + 4q log q)

provided that 16k ≥ q. Under this assumption, we derive Weyl's inequality since

∣∣∣k−1∑
x=0

e(αx2)
∣∣∣ ≤√16k

q
(k + 4q log q)

≤ 4k
√
q

+ 8
√
k log q.

A.3.7 Lemma 3.5, Density of I

We observe that the density of I is

|I|
|ZN |

=
2
⌊
εN
2

⌋
+ 1

N
.

Note that

〈A, I ∗ (−I)〉 = ExA(x) Ey+z=x I(y)(−I(z))
= ExA(x) Ey−z=x I(y)I(z)
= 0

and

〈A, I ∗ (−I)〉 = 〈Â, ̂I ∗ (−I)

= 〈Â, Î(−̂I)〉.

We claim this is 〈Â, |Î|2〉. It su�ces to show Î(−̂I) = |Î|2. Indeed,

Î(−̂I)(ψ) =
(∑

x

I(x)ψ(x)
)(∑

y

(−I(y))ψ(y)
)

=
∑
x,y

I(x)I(y)ψ(x)ψ(−y)

=
∑
x,y

I(x)ψ(x)I(y)ψ(y)
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=
(∑

x

I(x)ψ(x)
)(∑

y

I(y)ψ(y)
)

= |Î|2(ψ)

as required.

A.3.8 Lemma 3.5, |I|2 ≥ ε2/2

To obtain the inequality |Â(0)||Î(0)|2 ≥ αε2/2 we need to show |Î(0)|2 ≥ ε2/2, that is,
|I|2 ≥ ε2/2. We will carry out equivalence transformations, writing β = εN/2 = s + t
with s ∈ Z and t ∈ [0, 1).

|I|2 ≥ ε2

2

⇐⇒
4
⌊
εN
2

⌋2 + 4
⌊
εN
2

⌋
+ 1

N2
≥ ε2

2
⇐⇒ 4 bβc2 + 4 bβc+ 1 ≥ 2β2

⇐⇒ 2s2 + 4s+ 1 ≥ 4st+ 2t2.

We note that 4s ≥ 4st and so if s ≥ 1 we are done as 2s2 + 1 > 2t2. But if s = 0 then

the above is equivalent to t ≤ 1/
√

2. That is, we are done unless

√
2 < εN < 2.

In this case, we use an averaging argument to show the original claim of Lemma 3.5.

The assumptions now are ε ∈ (
√

2/N, 2/N) and A ∩ [−1, 1] = ∅. Note that 4N < 8/ε
and so it su�ces to �nd r 6= 0 with |Â(r)| ≥ α/8N ≥ εα/16. We know that∑

r

|Â(r)|2 = |A| = α

⇐⇒
∑
r 6=0

|Â(r)|2 + α2 = α

and hence by averaging we see that there exists an r 6= 0 such that

|Â(r)| ≥
√
α(1− α)
N − 1

>

√
α(1− α)

N
.

We are done if

8
√
α(1− α)N ≥ α ⇐⇒ α ≤ 64N

64N + 1

Finally, suppose this it not the case, i.e, α > 64N/(64N+1) and recall that A∩[−1, 1] = ∅
and hence α ≤ 1− 3/N . But now we observe that

1− 3
N

≤ 64N
64N + 1

⇐⇒ −191N − 3 ≤ 0

which gives the desired contradiction.
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A.3.9 Lemma 3.5, |I| ≤ 2ε

Next we consider the inquality |I| ≤ 2ε. Once again, this is not true in general, however,

in the case when it this fails we can immediately prove the original Lemma 3.5.

|I| =
2b εN2 c+ 1

N
≤ 2ε

⇐⇒ 2
⌊εN

2

⌋
+ 1 ≤ 2εN

Writing β = εN/2 and further β = s+ t with s ∈ Z and t ∈ [0, 1),

⇐⇒ 2 bβc+ 1 ≤ 4β
⇐⇒ 1 ≤ 2s+ 4t.

This is immediate if s ≥ 1. But if s = 0 this is equivalent to t ≥ 1/4. Thus, |I| ≤ 2ε
unless

εN

2
∈
(
0,

1
4

)
so ε ∈ (0, 1/2N), A ∩ [0] = ∅ and I = [0]. As before, we will use an averaging argument

to resolve this case. We aim to �nd an r with 0 < |r| ≤ 8/ε2, but 16N < 8/ε2 so this

condition reduces to r 6= 0. We further require |Â(r)| ≥ εα/16 so it su�ces to �nd r 6= 0
with |Â(r)| ≥ α/32N . Again, ∑

r 6=0

|Â(r)|2 = α− α2

so, by averaging, there exists r 6= 0 such that

|Â(r)|2 ≥ α(1− α)
N − 1

≥ α(1− α)
N

.

We are done if
α(1− α)

N
≥ α2

(32N)2
⇐⇒ α ≤ 1024N

1024N + 1
.

Finally, suppose this is not the case and recall that A ∩ [0] = ∅ so α ≤ 1 − 1/N . But

now we observe

1− 1
N

≤ 1024N
1024N + 1

⇐⇒ −1023N − 1 ≤ 0,

giving the desired contradiction.

A.3.10 Lemma 3.5, |Î(r)| ≤ 1/(2N‖r/N‖)

We now obtain the inequality

|Î(r)| ≤ 1
2N‖ rN ‖

.

Note that

NÎ(r) =
∑
k∈ZN

I(k)e2πirk/N
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=
∑

−εN/2≤k≤εN/2

(
e2πir/N

)k
= e(r/N)bεN/2c

1− e(r/N)|I|

1− e(r/N)
.

Thus

N |Î(r)| = |1− e(r/N)|I||
|1− e(r/N)|

≤ 2
4‖r/N‖

so

|Î(r)| ≤ 1
2N‖r/N‖

=
1

2|r|
.

A.3.11 Lemma 3.5, Integral bound

To complete the proof, we obtain the inequality

∑
r>8/ε2

α

4r2
≤ 3αε2

16
,

that is ∑
r>8/ε2

1
r2

≤ 3ε2

4
,

by integrating the function 1/r2 as follows.

∑
r>8/ε2

1
r2

≤
∫ ∞

8/ε2−1

1
r2
dr =

[
−1
r

]∞
8/ε2−1

=
ε2

8− ε2
.

We are done provided

ε2

8− ε2
≤ 3ε2

4
⇐⇒ 3ε2 + 4ε− 24 ≤ 0

which clearly holds for all 0 < ε ≤ 1.

A.3.12 Second proof of Theorem 3.1, Pigeonhole principle on the circle

We claim that for k ∈ N there exists 1 ≤ q ≤ k and p coprime to q such that |α− p/q| <
1/kq.

Partition the unit circle into intervals of width 2π/k and consider the distribution of

e(rα) for r = 0, . . . , k. By the pigeonhole principle, there exists r < s such that e(rα)
and e(sα) are in the same interval, i.e., there exists q with 1 ≤ q < k and ‖qα‖ ≤ 1/k.
Then there exists an integer p such that |qα− p| = ‖qα‖ ≤ 1/k and so |α− p/q| ≤ 1/kq.
If we write p/q = p′/q′ in lowest terms so (p′, q′) = 1 so 1 ≤ q′ ≤ q then |α − p′/q′| ≤
1/kq ≤ 1/kq′.
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A.3.13 Second proof of Theorem 3.1, Case q > Q

We derive the su�cient condition Q ≤ 12k/ log k for the equation

4k
Q1/2

+ 8
√
k log q ≤ 32k

Q1/2

⇐⇒ 8
√
k log q ≤ 28K

Q1/2

⇐⇒ 4kQ log q ≤ 49k2

⇐= Q log q ≤ 12k
⇐= Q ≤ 12k/ log k

using that q ≤ k.

A.3.14 Second proof of Theorem 3.1, Choice of Q

We show the choice 256k1/3 = Q5/6 satis�es the condition Q ≤ 12k/ log k for su�ciently

large k.

2566k2 ≤ 125k5

(log k)5
⇐⇒ 256

(64
3

)5
≤ k3

(log k)5

We �nd the minimum of the right hand side by di�erentiating with respect to k,

d

dk

k3

(log k)5
=

3k2

(log k)5
− 5k2

(log k)6
= 0 ⇐⇒ log k =

5
3
.

We deduce that for k ≥ e5/3 the right hand side is strictly increasing. We claim the

inequality is satis�ed for k ≥ 105. As 64/3 ≤ 25, we have that

256
(

64
3

)5

≤ k3

(log k)5

⇐= 256 · 255 ≤ 1015

(5 log 10)5

⇐⇒ (log 10)5 ≤ 27.

Now log 10 < 5/2, so we are done since 55 ≤ 212.
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