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Chapter 1

Number Fields

Definition. A number field K is a finite field extension of Q. Its degree is [K : Q], i.e.,
its dimension as a Q-vector space.

Definition. An algebraic number « is an algebraic integer if it satisfies a monic polyno-
mial with integer coefficients. Equivalently, its minimal polynomial over Q should have
integer coefficients.

Definition. Let K be a number field. Its ring of integers Ok consists of the elements
of K which are algebraic integers.

Proposition 1.1. (i) Ok is a Noetherian ring.
(ii) rankz O = [K : Q), i.e., Ok is a finitely generated abelian group under addition,
and isomorphic to Z®UQ,
(iii) For every a € K there exists n € N with an € Ok.
(iv) Ok is the maximal subring of K which is finitely generated as an abelian group.
(v) Og is integrally closed, i.e., if f(X) € Og[X] is monic and f(«a) = 0 for some
o € K then a € Ok.

Example.
Number field K Ring of integers Ok
Q Z
Q(V4d), d € Z — {0,1} squarefree Z[Vd] if d = 2,3 (mod 4),

Z[(14+/d)/2] if d=1 (mod 4)
Q(¢n), ¢n a primitive nth root of unity  Z[(,]

Example. K = Q(v/~3) = Q((3) since ¢ = (~1+ v/~3)/2, Ok = Z[(3).

1.1 Units
Definition. A unit in a number field K is an element o € O such that o~ € Ok.

The group of units in K is denoted by Op.

Example. For K = Q we have O = Z and Oy = {£1}. For K = Q(v/—3) we have
Ok = Z[(14 v/-3)/2] and OF = {1, £(3, £(3}.
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Theorem 1.2 (Dirichlet’s Unit Theorem). Let K be a number field. Then O is a
finitely generated abelian group. More precisely,

X ri+ro—1
O =AXLZ

where A is the finite group of roots of unity in K, and r; and 79 denote the number of
real embeddings K — R and complex conjugate embeddings K — C with image not
contained in R, so 71 + 2ry = [K : Q).

Corollary 1.3. The only number fields with finitely many units are Q and Q(v/—D),
D> 0.

1.2 Factorisation
Example. Z has unique factorisation. We do not have this luxury in Ok in general,
e.g., let K = Q(v/—5) with O = Z[/—5] then
6=2-3=(1+v-5)(1—-+v-5)
where 2,3,1 £ /=5 are irreducible and 2, 3 are not equal to 1 £+ +/—5 up to units.

Theorem 1.4 (Unique Factorisation of Ideals). Let K be a number field. Then every
non-zero ideal of Ok admits a factorisation into prime ideals. This factorisation is unique
up to order.

Example. In K = Q(v/-5),
6) =(2)(3) = (2,1 4+ vV=5)% (3,1 +vV=5)(3,1 — V=5)
= (1+vV=5)1-vV=5)=(2,1+V=5)3,1+vV=5)(2,1+vV=5)(3,1—5)
where (2,1 + /=5), (3,1 + v/=5), (3,1 — v/=5) are prime ideals.

Definition. Let A, B C Ok beideals. Then A divides B, A | B, if there exists C C O
such that A - C' = B. Equivalently, if in the prime factorisations

A=P"M ... P, B=P".. P
we have m; < m; for all 1 <i <k.

Remark. (i) For o, 8 € O, (a) = (8) if and only if o = Bu for some u € OF%.
(ii) For ideals A, B C Ok, A | B if and only if A D B.
(iii) To multiply ideals, just multiply their generators, e.g.,

(2)(3) = (6)
(2,14+vV=5)(3,1++vV=5)=(6,2+2vV—5,3+3vV—5,—4 + 2v/-5)
= (67 T+ _5)
= (14++v-5).
(iv) Addition of ideals works completely differently, simply combine the generators,

e.g.,
(2)+3)=(2,3) = (1) = Ok.



1.3 Ideals

Example. K = Q(v/-5), O = Z[V/-5].

An ideal is, in particular, a sublattice of Q. In fact, it always has finite index in Ok.

Lemma 1.5. Let K be a number field, &« € Og — {0}. Then there exists § € O — {0}
such that af € Z.

Proof. Let f € Z[X] be the minimal polynomial of «, so

fX) =X -a)(X=m)- (X =)

in a splitting field. Observe that a[[v; = N € Z — {0}, so

H%Z%EK

and all ~; are algebraic integers, so

B=]]ne0x-{0}
with af = N € Z — {0}. O
Corollary 1.6. Let A C Ok be a non-zero ideal. Then [Of : A] is finite, i.e., ranky A =
K- Q).

Proof. Let « € A— {0} and 8 € Ok such that af = N € Z— {0}, and N € A C Ok as
A is an ideal.
Ok : Al <Ok : (a)] < [Ok = (N)]
= [OK H NOK]
= [N < o0,
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Definition. The norm of a non-zero ideal A is the index [Of : A].

Lemma 1.7. Let o € Og — {0}. Then
|Nk/g(a)] = N(()).

Proof. Let vy,...,v, be a Z-basis for Og. Write T,: K — K for the Q-linear map
z — «ax. Then

NK/Q(CV) = det Ta

= det(awy,...,avy)

=x[(v1,...,0n) : (@1, ..., V)]

= +[Ok : aOk]

=+N(()). O

1.4 Ideal Class Groups

Let K be a number field. Define an equivalence relation ~ on non-zero ideals by A ~ B
if A= AB for some A € K*. The ideal class group Cl(K) of K is the set of equivalence
classes. This is in fact a group, the group structure comes from multiplication of ideals.
The identity element is the class of principal ideals.

In particular, O is a unique factorisation domain if and only if CI(K) = 1.
Theorem 1.8. CI(K) is finite.

Exercise. Let K = Q(v/—D) be an imaginary quadratic field. Then two non-zero
ideals belong to the same class in C1(K) if and only if the lattices they give in C are
homeothetic, i.e., related by scaling and rotation about 0.

1.5 Primes and Modular Arithmetic

Definition. A prime P in a number field K is a non-zero prime ideal in Og. Its residue
field is Ok / P.

Example. K =Q, Ox =7, P = (p), Ox/P =7Z/(p) = Fp, where p is a prime number.
Definition. The absolute residue degree of P is
(O /P : Ty,
where p = char Ok /P.
Lemma 1.9. Ok /P is a finite field.
Proof. P is a prime ideal hence Ok /P is an integral domain and
|Ok/P| =[Ok : P] = N(P) < o0,

hence Ok /P is a field. O



Note that |Og/P| = N(P).
Example. K = Q(i), O = Z]i].

(i) P =(2+1) then O /P = F5 with representatives 0,4,7 + 1,27, 2i + 1.
(i) P = (3) then O /P = Ty.

Notation. If A C Ok is a non-zero ideal we say that
r=y (mod A)
ifx—ye A

Lemma 1.10. Let A, B C O be ideals with prime factorisations

k k
A=[[P™  B=][P"
=1 i=1

where m;,n; > 0 and the P; are distinct prime ideals. Then
(i) AnB = [, prextmeni},
(i) A+ B =[], pmnlmind,
Proof. (i) This is the largest ideal contained in both A and B.
(ii) This is the smallest ideal containing both A and B. O

Lemma 1.11. Let P be prime in K. Then

(i) [Ox/P"| = N(P)",

(i) P*/P"t! = O /P as Og-modules.
Proof. Note (ii) implies (i) by writing

0K /P"| = |Ok [ P||P/P?|---|P""! /[P"| = N(P)".
By unique factorisation, P* # P!, Pick 7 € P"\ P"*! and define
¢: O — P"/P""! z s mz mod P!
then
ker ¢ = {zx : 7z € P"T!}
= {a: P"" | (n)(2)}

={z: P[(2)}
=P.

Note Im ¢ = P"/P"*! for otherwise P" 2 7+ P™ 2 P"! a contradiction by unique
factorisation. Now apply the First Isomorphism Theorem. O

Theorem 1.12 (Chinese Remainder Theorem). Let K be a number field, Pi,..., Py
distinct prime ideals. Then

OK/Plnl---P]?k ’E(DK/P{” X e ><OK/P,?"C
via

z mod Pt --- P — (x mod P/",... & mod P'*).
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Proof. Let

ﬂ): OKHOK/P{H X oo X OK/P]?k

x — (zmod P, ...,z mod P*).

Then
keryp ={z:Vix e sz} = mpzm :sznl

We claim Im+4) contains (0,...,0,1,0,...,0), so % is surjective. Then by the First
Isomorphism Theorem the result follows. Indeed, by Lemma 1.10,

P 4+ P =0k =0k =(1)

where P = Hi# P’ Hence there exist a € Pjnj, 6 € P witha+8=1. Then 6 =0
(mod P), B =1 (mod Pjnj), so ¥(8) =(0,...,0,1,0,...,0). O

Remark. The Chinese Remainder Theorem says we can solve congruences

r=a; (mod pit)

r=a; (mod pi*)
for any given aq,...,ax. This is called the Weak Approximation Theorem.

Corollary 1.13.
N(AB) = N(A)N(B).

Corollary 1.14.
N(A) € A.

1.6 Factorising Primes

Example. Take primes in Q and factorise them in Q(7).

(2) = (1 +1)? 3)=(3) (5) = 2+9)(2-1)
(7) = (7) (11) = (11) (13) = (3 + 2i)(3 — 2i)

Remark. If P is a prime of Q(¢) then P > N(P) € Z, so P contains a prime number p
so P | (p). In other words, factorising 2,3,5,7,... we find all primes in Q(%).

Definition. Let L/K be an extension of number fields, and A C O an ideal. The
conorm of A is the ideal AOQy, of Oy, i.e., it is generated by the elements of A. Equiva-
lently, if A = (a1,...,a,) as an Og-ideal then AOp, = (ay,...,ay) as an Op-ideal.

In particular, (AOL)(BOL) = (AB)Or, and if M/L/K is a tower of number fields then
AOy = (AOL)Oyp.

Definition. Let L/K be an extension of number fields. Say a prime @ of L lies above
a prime P of K if @ | POr. Equivalently, Q D P.



Lemma 1.15. Let L/K be an extension of number fields. Every prime @ of L lies
above a unique prime of K: @ lies above Q N Ok.

Proof. Let @ be a prime of L. Then QN O is an ideal of O, clearly also a prime ideal.
Q N Ok > N(Q) hence is non-empty, so @ N Ok is a prime. So @ lies above Q@ N Ok.

For uniqueness, note that if @ lies above P and P’ then @ D P+ P’ = (1)so 1 € Q,
contradiction. O

Lemma 1.16. Suppose @ C O, lies above P C Og. Then Or/Q is an extension of
Ok/P.

Proof. Let ¢: Og /P — Or/Q,x mod P — x mod @. This is well-defined since @ D P,
and this is a ring homomorphism sending 1 to 1, so it is an embedding of fields. O

Definition. If () lies above P, its relative residue degree is

fo/p=10L/Q: Ok /P].
Its ramification degree eq,p defined by
Q°@/r | POL, Q@ POL.

Therefore,

PO = H Q:Qi/P

and @); has residue field an extension of the residue field of P of degree fg,/p.

Definition. o If fo/p # 1 then Q/P is inert.
o If eg/p # 1 then Q/P is ramified.
e If eg/p = 1 then Q/P is unramified.

Lemma 1.17. Suppose M/L/K is a tower of number fields and we have primes R over
Q over P in M, L, K, respectively. Then

(i) er/p = er/Qeq/p:
(i) fr/p = friofq/p-

Proof. (i) Just factorise POjy.
(ii) By the tower law,

[Om/R: Ok /P]=[0Om/R:0L/Q]0OL/Q : Ok /P]. O]

Proposition 1.18. Let L/K be an extension of number fields, A C Ok a non-zero
ideal. Then
N(AOL) = N(A)EK],

Proof. If a € K then
|Nic /o ()5 = Ny, g (a).
As [Nk g(@)| = N((«)) and similarly over L, we have
N(AOL) = N(A)EK]

if A is principal. In general, A¥ = A... A is principal for some k € N by finiteness of
CI(K). As N(A)* = N(AF), the result follows. O
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Theorem 1.19. Let L/K be an extension of number fields. Let P be a prime of K and
decompose

m
PO, = H Q5
i=1
with e; = eq,,/p for distinct primes @;. Then

Zeifi = [L . K]
=1

Theorem 1.20 (Kummer-Dedekind). Let L/K be an extension of number fields,
suppose Or, D Ok[a] with finite index N. Let the minimal polynomial of a be

f(X) € Ok[X].
Let P be a prime of K with gcd(N,|Ok/P|) = 1. If f(X) = [[]~, 3" (mod P) for
distinct irreducibles g; and g; = ¢; (mod P) then

m
ro, =]]Q
i=1

with distinct primes @); and

€Q,/P = €y

fq.p = deg gi(X),

Qi = POL + gi(a)OL.

Remark. We cannot always assume « is such that [Of : Ogla]] = 1. But by the
Primitive Element Theorem, we can find « such that [Of : Og[a]] < co.
Example. Let K =Q, L = Q((5), Or = Z[(5] and o« = (5. Then N =1 and

X5_1 4 3 2
fX) =57 = X"+ X+ X+ Xt 1.

For the prime integers 2,...,19 we have the following.
(2)  f(X) (mod 2) is irreducible
(3)  f(X) (mod 3) is irreducible
(5) £(X)= (X —1)" (mod 5)
(7)  f(X) (mod 7) is irreducible
(11) f(X)=(X —-4)(X —9)(X —5)(X —3) (mod 11)
(13)  f(X) (mod 13) is irreducible
(17)  f(X) (mod 17) is irreducible
(19) f(X)=(X2+5X+1)(X?2-4X +1) (mod 19)

(2) 3) (5,(5—1)* o o e o o o Q(CS)




Definition. Let L/K be an extension of number fields, P prime in K, PO, = Hljil Q5
for distinct primes @; in L. Then P

o splits completely if N = [L : K]
o splits if N > 1
e is totally ramified it N =1 = fq/p, eq/p = [L : K].

If L/K is Galois then it turns out that for all 4, j

In this case say P is

e ramified if e, /p > 1,

o unramified if eq,/p =1,

e inert if POy is prime.
Example. Let K = Q, L = Q((p») for an odd prime p. Then O = Z[{]. In
Kummer—Dedekind, take a = ( so

f0) = 2

Xp"fl _ 1 (mOd p)

So p is totally ramified in Q(&pn). If ¢ # p is prime then XP" —1 has distinct roots in
F, as ged(XP" — 1,p"XP"~1) = 1 in F,[X], hence f(X) has distinct roots in F,, so q is
unramified in Q((pn).

Proof (Theorem 1.20). Write A = O[a], F = Ok /P, char Og /P = p. Considering the
map a — X, we see that

A/(P, gi(a)) = OK[X]/(f(X)aR 9i(X))
)

is a field of degree deg g;(X) over F as ¢;(X) is irreducible.

Consider ¢: Or, N ook [a] = A — A/(P, gi(a)). ¢ issurjective, as -N is an isomorphism
on A/(P,gi(a)). If x € ker ¢ then Nz € PA + g;(a)A but pxr € PA C PA + gi(a)A so
x € PA+ gi(a)A as ged(N,p) = 1. In particular, € @Q;. Conversely, if x € @; then
Nz € PNOL + gi(a)NOp, C PA+ g;(a)A so = € ker ¢. Thus

OL/Qi = A/(P, gi(a))

so (; is prime and fg,/p = degg;.

Fori # j, ged(g:(X), g;(X)) = 1 so we find A\(X), u(X) € Og[X] such that A(X)g;(X)+
1(X)g;(X) =1 (mod P). Then

Qi+ Qj = POL + gi(a)OL + gj(2)OL 3 Ma)gi(a) + p(a)g;j ()

so 1 EQi+Qj and Qz#Q]
Note that

HQ“ = H (POy + gi(a)OL)
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C POL + (H gi(a>ei)0L

]

C POy,
as [[; gi(a)% = f(o) =0 (mod P). But

N([T@) = TI0E)™ = P12/ = N(POL)

(2

by Proposition 1.18. Hence PO, =[], Q5. O

Proposition 1.21. Suppose L/Q is finite, « € Oy, such that L = Q(«) and the minimal
polynomial of o is f(X) € Z[X]. Suppose f(X) mod p has distinct roots in F,,. Then
[Of : Z|a]] is coprime to p. (So Theorem 1.20 applies.)

Proof. Let F be a splitting field of f, f(X) = [[i;(X — ;). Pick a prime P in F above
p.

F P
/
L Galois
N
Q (p)

Then modulo P, f(X) = [[,(X — &), where &; are distinct as Op/P is a finite
extension of [Fp, so

H(ai —aj) #0 (mod P).

i<j
Let (1,..., 0, be a Z-basis for (J9L, SO
12 B
of sy 5‘2
ot B

where M € GL,(Z) with det M = [Of, : Z|a]]. Write o1,...,0n,: L — F for the
embeddings with o;(a1) = ;. Then

1 1 1
aq a2 Qp
2 2 2
H(ai —oj)=| N a3y an
i<j :
n—1 n—1 n—1
% (o) o

for some B € Op.
Hence pt [0y : Z[a]]. O
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Proposition 1.22. Let K be a number field, P a prime of K. Suppose f(X) € Og[X]
is with respect to P, i.e.,

fX)=X"4a, 1 X" -+ a1 X +ag

with P | (a;) for i = 0,...,n — 1 and P%{ (ag). Then f(X) is irreducible, and if « is a
root then K («)/K is totally ramified.

Proof. See Local Fields. O






Chapter 2

Decomposition of Primes

2.1 Action of Galois

Let F'/K be a Galois extension of number fields. Recall that Gal(F/K) = Autg (F).

e F/K is normal, i.e., if f(X) € K[X] is irreducible and it has a root in F' then all
its roots lie in F'.

e |Gal(F/K)| = [F : K].

e {H < Gal(F/K)} is in bijection with {L : K ¢ L C F} via H — FH and
L +— Gal(F/L).

Example.

Lemma 2.1. Suppose F/K is Galois, g € Gal(F/K). Then

(i) a € O = g(a) € Op; so Gal(F/K) acts on Op.
(ii) If A C Op is an ideal then g(A) is an ideal in Op.
(iii) If A, B C Op are ideals then g(AB) = g(A)g(B) and g(A+ B) = g(A) + g(B).
(iv) Suppose @ is a prime of F' above P of K. Then ¢(Q) is a prime of F' above P, so
Gal(F'/K) acts on the primes of F' above P.

(V) eq/p = egq@)/ps fo/p = fo@)/P
Proof. Clear. 0

Example. Let K = Q, F' = Q(i), so Op = Z]i], Gal(F/K) = {t,c =~}. Note c fixes
(1+1), c fixes the lattice of (3), and (5) = (24 4)(2 — ¢) and ¢ swaps the two factors.

Theorem 2.2. Let F'//K be a Galois extension of number fields, P a prime of K. Then
Gal(F/K) acts transitively on the primes of F' above P.

Proof. Let Q1,...,Qy, be the primes of ' above P. We are required to prove that there
exists ¢ € Gal(F/K) such that g(Q1) = Q2. Pick z € Op with x = 0 (mod @1),
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ie, x € Q1,and z Z 0 (mod Q;) for 1 < i, i.e., x &€ Q;. This exists by the Chinese
Remainder Theorem. Then

[l @) eo0kn@i=PcQq.

heGal(F/K)
So for some g € Gal(F/K), g(z) = 0 (mod Q2), as Q2 is a prime ideal, but g(z) = 0
(mod ¢(Q1)) and this is the only such prime above P. O

Corollary 2.3. Suppose F/K is Galois. If @1, Q2 are primes of F' above P a prime of
K then

€Q1/P = €Qy/P> Jo./p = fq./p:

2.2 Decomposition Group

Suppose F'/K is a Galois extension of number fields, P a prime of K, and Q = Q1,...,Qn
the primes above P.

Definition. The decomposition group Dg of @) above P is the subgroup of Gal(F/K)
fixing Q, i.e.,

Dq = Stabgai(r/ i) (Q)-
Remark. g € D fixes @, so it acts on Op/Q by z + Q — g(z) + @, and given an
automorphism of Op/Q fixing Ok /P there is a natural map

Dq — Gal((Or/Q)/(Ok/P)).

Example. Let K = Q, F = Q(i), so Op = Z]i], Gal(F/K) = {t,c =~}. Look at (3),
its residue field is Fy. ¢ € D(3y, c(a + bi) = a —bi = (a + bi)® (mod (3)), i.e., ¢ acts as

x — 3 on Fy, i.e., as the Frobenius automorphism.

Theorem 2.4. The map Do — Gal((Op/Q)/(Ok/P)) is surjective.

Proof. Pick § € Op/Q with Op/Q = Ogk/P[f], e.g., B a generator for (Op/Q)*.
Say [ has minimal polynomial f(X) over Ok /P with roots 8 = (1, 32,...,0,. Note
Bi € Op/Q since F/K is Galois.

It suffices to show that there exists g € Gal(F/K) such that ¢(Q) = @ and g(8) = Ss.

Pick o € Op with a =  (mod Q) and o = 0 (mod Q') for all Q" # Q above P.
Say F(X) is the minimal polynomial of « over K with roots @« = ai,...,a,. Note
at, ..., o € Op.

F(X) mod @ has [ as a root, its roots are «; mod @, so is divisible by the minimal
polynomial of 3, hence has (2 as a root. Without loss of generality, cs = (2 (mod Q).

Pick g € Gal(F/K) with g(a) = a2. Then g(a) #0 (mod Q) so g(Q) = Qso g € Dg/p.
Also g(#) = B2 as 8= a (mod Q), B = g(a) (mod Q). 0

Corollary 2.5. Let K be a number field, f(X) monic irreducible over K of degree n
and with coefficients in Og. Suppose F' is the splitting field of f(X). Let P be a prime
of K and assume

f(X)=g1(X) gm(X) (mod P)
with g;(X) distinct irreducible polynomials over O /P. Then Gal(F/K) C S,, contains
an element of cycle type (deggi,...,deggm).
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Proof. Let @ be a prime of F' above P. Let ay,...,a, be the roots of f(X), note that
a; mod @ are roots of f(X) mod P, and are distinct in Op/Q.

Therefore, the action of g € Dg/p on ai,...,q, is exactly the same as on a; mod
Q,...,a; mod Q.

Take g € D¢, p which maps to the generator of Gal((Or/Q)/(Ox /P)), it has the correct
cycle type in its action on a; mod Q. O

Definition. Suppose F/K is a Galois extension of number fields, @ a prime above P.
The inertia group Ig,p is the subgroup of Dy, p that acts trivially on Or/Q.

Ig/p = ker(Dg/p — (OF/Q)/(Ok /P)).

This is surjective, so
Dqsp/lg/p = Gal((0r/Q)/(OK/P)).

The right-hand side is cyclic generated by the Frobenius element ¢: 2 — z/O%/Pl. The
(arithmetic) Frobenius element Frobg, p is the element of Dg/p/Ig,p that ¢ corresponds
to, e.g., in the corollary, I, p is trivial and Frobg,p acts as an element in S, of cycle

type (deggi, ..., deg gm).
Lemma 2.6. Suppose F/K is Galois, @ a prime of F' above P, a prime of K. Then

(i) [Dgspl=eq/pfq/p;
(ii) the order of Frobg,/p is fg,p,

(iii) [Ig/p| = eq/p-
If K ¢ L C F is an intermediate field and S a prime below () then
(V) IQ/S = IQ/p N Gal(F/L)

Proof. (i) If n is the number of primes of F' above P then
n|Dq,p| = |Gal(F/K)|
using Orbit-Stabiliser and Theorem 2.2

=[F: K]

n

=> el

=1
= neq/plqp:

fo/p =10F/Q: Ok/P]
= |Gal((Or/Q)/(Ok/P))]
which is the order of the Frobenius element.

(iii) |Dg,pl = |1g,p|(order of Frobenius).
(iv) From the definition.
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(v) From the definition. O

Example. Let K = Q, F' = Q((,), so O = Z[(p]. Let g # p be a prime number and
@ a prime of F' above (q).

Then F/K is unramified at @, so Ig/(q) = {t}. Frobg,( acts on Op/Q by x — z9. Note
Ok /(q) is generated by the image of (,, so Frobg/(q) = ¢ if and only if Frobg/(q)(gp) =(p
mod Q if and only if ¢f = ¢, mod Q if and only if ¢f = (,, because (! are distinct
modulo @ for 0 < ¢ < p as XP — 1 has distinct roots modulo . That is, the order of
Frobg(q) is the order of q in (Z/pZ)*, which is thus also equal to fq /(-

2.3 Counting Primes

Lemma 2.7. Let F//K be a Galois extension of number fields.

(i) Primes of K are in bijection with Gal(F/K)-orbits of primes of F, via P
{primes of F' above P}.
(ii) If Q is a prime of I above P then gDg/p — g(Q) for g € Gal(F/K) is a Gal(F/K)-
set isomorphism from G/Dg,/p to the set of primes of I over P.
(111) Dg(Q)/P = gDQ/ngl’ Ig(Q)/P = gIQ/ngl for g € Gal(F/K)

Proof. (i) Follows from the transitivity of Gal(F#/K) on primes above P, see Theo-
rem 2.2.
(ii) Elementary group theory check.
(iii) Elementary check. O

Remark. Suppose G is a finite group. Then

{transitive G-sets}/ = = {subgroups D < G} /conjugacy
X — Stab(point)
G/D -~ D

In particular, X = G/ Stab(point).

Corollary 2.8. Let F//K be a Galois extension of number fields, L an intermediate
field. Let P be a prime of K, Q = @1, ...,Q, the primes of F' above P. Then

{primes of L above P}  <—— {Gal(F/L)-orbits of Q1,...,Qn}
<~——  {Gal(F/L) — Dg double cosets in Gal(F/K)}

via the map taking S to the elements of G that take @) to a prime above S.

Remark (Double cosets). Suppose D, H < G then a D — H double coset is a set of the
form DgH = {dgh :d € D,h € H}.
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Example. Let K = Q, F' = Q((5, v/2), a splitting field of X° — 2.

/\

L=Q(v2) Q(¢s)

N

Let p = 73. Note p is unramified in Q(¢5), and p is unramified in Q(+/2), as X2 — 5 has
distinct roots modulo 73. Thus, if @ is a prime of F" above 73 then eq | 4, eq | 5, hence
eg =1and I = 1.

73 generates (Z/5Z)*, so there exist a unique prime in Q((5) above it, with residue
degree 4.

Dq/Ig is cyclic, hence Dg is cyclic of order divisible by 4. Thus Dg = Cy < Ss.
Without loss of generality, D¢ fixes V2.

So the set of primes of F' above 73 is isomorphic to Gal(F/K)/Dgq as a Gal(F/K)-set,
and also

Gal(F/K)/Dq = {V2,(:V/2, V2, (3V2, (3 V2}.
Therefore, there exist two primes above 73 in Q(v/2).

Note if D, H < G are finite groups then H — D double cosets are H-orbits on G/D (G
acts on the left, HgD), which are the same as D-orbits on H\G (G acts on H\G via
z(Hg) = Hga™").

Lemma 2.9. Suppose F/K is a Galois extension of number fields, and L is an interme-
diate field. Let G = Gal(F/K), H = Gal(F/L), D = Dg the decomposition group of a
prime @ of F' above a prime P of K. Then

{embeddings L — F} — H\G
gov— Hg™!

is a G-set isomorphism. In particular, the number of primes of L above P is equal to
the number of Dg-orbits on the set of embeddings L — F.

Proof. Elementary check. O
Remark. (i) If G is a finite group, X a G-set, then
# G-orbits on X = (I, C[X]).
(ii) If X is a transitive G-set, S the stabiliser of a point in X, then
C[X] = Ind§ I

(iii) Suppose
F RQ=Q1 Q2 - Qn
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Then the number of H-orbits on primes above P is equal to
(I, C{primes above P})y = (I, Res$ Ind% 1) 5.
If D = D¢ then the number of D-orbits on embeddings L — F'is equal to
(Ip,{L — F})p = (Ip,Res% Ind$ I) p.

That these are equal is an instance of Frobenius reprocity (see Representation
Theory).

2.4 Induced Representations

Let G be a finite group. The permutation representation is the following. If G acts on
X = {z1,...,z,} we associate to it the representation of C[X] of dimension n = |X|
with basis z1,...,z, and action

9> Xiwi =Y Nig(ai).
The number of G-orbits on X is
(I, C[X]).

The character formula is

Xc[x)(g9) = # of fixed points of g on X.

Let H < G of index n, V an H-represention. Officially,
Ind§ V = Homes (C[G], V)

so dim Indf] V =ndimV. Concretely, if g1, ..., gn are coset representatives for H take
md%V =Va&---®V (n times) with G-action

9(0,...,0,v,0,...,0) = (0,...,0,h(v),0,...,0)

where v is in the ith place, h(v) in the jth place and gg; = gjh for some h € H.
Note if V =T then Ind% V = C[G/H].

We have the character formula

1 _
XIndgV(g):F Z XV(Z'QZ 1)'
| | zeG

292" 1€H

2.5 Induction and Restriction

Consider the character tables of S35 and Sy.

S3 1 (zy) (wyz)
1 1 1
sign e 1 -1 1
acson A p 2 0 -1



19

We observe the following identities

which we can visualise as follows:

S4/Kleingroup = Ss
C[{l? 2’ 37 4}] —1
Ves

ResI=1
ResV =pal
IndI=14V

Sy 1 (zy) (xyz)
I 1 1 1
S 1 -1 1
T 2 0 —1
vV 3 1 0
w 3 -1 0
ResS =¢

ResW =pade
Inde=SeW

I

S\]I
T €
1% p

\

w

(zy)(zw)  (zyzw)

1 1

1 -1

2 0

—1 -1

—1 1
ResT =p
Indp=TaeVaeW

Theorem 2.10 (Frobenius reciprocity). H < G, V an H-representation, W a G-
representation. Then

Proof. TODO. Provide reference.

Theorem 2.11 (Mackey’s formula). D, H < G, p a D-representation.

{21,...,2,} be a set of H — D double coset representatives. For x € X let p*(zgz ")

(V,Res W)y = (Ind V, W)g.

p(g), a representation of Dz ~!. Then

G G _ H xDx~ ! T
ReSH IndD P = @ Index_lmH ReSxDm_lﬂH p -

Proof. TODO. Provide reference.

Fix the following setting.

zeX

2.6 Counting More Primes

Let F/K be a Galois extension of number fields, G

Let X

Gal(F/K), H <G, L =FH" (Q a prime of F above S a prime of L above P a prime of
K, OK/P:Fpk, DQ/P =D, IQ/P =1aD.

Ifn| fo/p let ¥n: D — GLi(C) = C* be a 1-dimensional representation of D, with
Yn(I) = {1} and wn(FrObQ/P) = (n, L€,

Yn: D — D/I = (Frobg,p) — C*,Frobg,p — (u.

If nt fo/p set P, =0.
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Lemma 2.12. The number of primes of L above P is
(I, Res% Ind% I) p.

Proof. Ind§ I = C[H\G] so the right-hand side is the number of H — D cosets. O

Lemma 2.13. n | fg/p if and only if ResBQ/S vn, = L. This is also equivalent to

D _
<R6SDQ/S ¢n>DQ/s =1.

Proof. If n{ fg/p then n{ fg,p by multiplicity of f. Assume n | fo,p. If g € D acts on

Or/Q as g(x) = +7) then Yn(g) = ¢! so ResBQ/S Y, = Lif and only if all g € Dg /g
fix Fpen if and only if
Or/8 = (Or/Q)P/% O Fpin,

using Theorem 2.4, if and only if n | fg/p- O

Proposition 2.14. The number of primes R of L above P with n | fr/p is
(o, ResH nd% 1).

Proof. If n{ fg,p the result is clear, so assume n | fg/p-

Let X = {x1,...,z,} be a set of representatives of H — D double cosets, so X bijects
with the primes in L above P via the map sending z to the prime of L below z(Q), by
Corollary 2.8.

Note that 95: Dygy — C* satisfies the definition of ¢/, for the prime z(Q). By
Lemma 2.13, the number of primes R of L above P with n | fr/p is

-1
> Resj v Resfi 1 1) = > (Ind” Resgrgpe1 95, 1)
zeX zeX

= (@ Ind? Resgrepa—1 ¥n, D
= (Res$§ Ind$ ¢, I g
= (¢, Res$ Ind% T)

using Frobenius reciprocity and Mackey’s formula. O
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L-Series

We will prove the following statements.

(i) If (a, N) =1 then there exists infinitely many primes p with p = a (mod N).
(i) If f(X) € Z[X] is monic and f(X) (mod p) has a root for all primes p then f(X)
is irreducible.

Definition. An (ordinary) Dirichlet Series is a series

()= ayn
n=1

with a, € C,s € C and we write s = o + it.

3.1 Convergence Properties

Lemma 3.1 (Abel’s Lemma).

M M-1, n M
> eutn = 32 (35 ) tn i) + (3 oo
n=N n=N “k=N k=N
Proof. Elementary rearrangement. O

Proposition 3.2. Let )\, — oo be an increasing sequence of positive reals. If the series
oo
f(S) — Z ane—Ans
n=1

converges for s = s¢ it converges uniformly in every domain of the form R(s) > R(so),
—A < arg(s —sg) < Afor 0 < A< 7. In particular, it converges for %(s) > R(so) and
defines an analytic function there.

Proof. The second statement follows from the first, since a uniform limit of analytic
functions is analytic. For the first statement, WMA sy = 0 (by setting s’ = s — s,

al, = e~ %0q,). Let ¢ > 0. Now by assumption > a, converges, so there exists Ny such

that for all N, M > Ny
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Thus we have

m
g ane s
n=N

(3w (S )

n=N “k=N k=N

M-1
<3 jee e e
n=N

Note that

|6—as . e—ﬂs‘ —

B
s/ e 8 dx
(073

8
<lsl [ lem™|dx
[0

B
= |s]/ e 7 dx
(04
|s

— J(efao . 6750)
g

for 0 < o < 3 and where o = R(s). Hence

for some K > 0 independent of s, by choice of our domain. O

Proposition 3.3. Let A\, — oo be an increasing sequence of positive reals. Suppose a,
are real and positive for all n. Suppose the series

£ = 3 ane
n=1

converges on R(s) > R € R, and the series has an analytic continuation to a neighbour-
hood of R. Then it converges for R(s) > R — ¢ for some ¢ > 0.

Proof. We may assume that R = 0. Then f is analytic on $(s) > 0 and on a disc around
0, so analytic on a disc of radius 1 + ¢ around s = 1.

Therefore, its Taylor series around 1 converges on —e.

fl=e)=>

k=0

| —

(DR ) (1)

o
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converges and
f(k)(s) = Z an(_An)ke_Ms
n=1

for R(s) > 0, where term-by-term differentiation is justified by local uniform conver-
gence. So

(-DF® () = i anAne
n=1

is a convergent series with positive terms. Hence

f=e) = 30 DO+ D an( DA
: n=1

k=0

1
=D ankie A”H(l +e)f
k,n )
is a convergent series with positive terms, so a rearrangement of terms is possible,

[eS)
_ Z ane—kne)\n(l—i-s)
n=1

o0
= g apeMe.
n=1
The right-hand side is a convergent series so the series expression of f at —e converges,

and hence by Proposition 3.2 on R(s) > —¢ as well. O

Proposition 3.4. (i) If a,, are bounded then the series ) %% converges absolutely
for R(s) > 1.
(ii) If the partial sums Zﬁi N @n are bounded then the series above converges on

R(s) > 0.

Proof. (i) 3. & converges for x > 1, z real.

n.’t

(ii) Exercise using Abel’s Lemma. (First reduce to s € R, by Proposition 3.2.) O

3.2 Dirichlet L-Functions

Definition. Let NV > 1 be an integer and let
v: (Z/NZ)* — C*
be a group homomorphism. Extend ¢ to a function ¢: Z — C

() = {w(n mod N) (n,N)=1 .

0 otherwise

Such a function is called a Dirichlet character modulo N. Its L-series, or L-Function,
is

Ln(,s) = t(nn.
n=1
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Remark. (i) ¢: (Z/NZ)* — C* is often referred to as a Dirichlet character.
(ii) Note that : (Z/NZ)* — C* is a 1-dimensional representation of (Z/NZ)*.
Number theorists have the habit of calling 1-dimensional representations charac-
ters.

Lemma 3.5. Let ¢ be a Dirichlet character modulo N. Then the following hold:

(i) ¥(a+ N) =1(a), i.e., ¢ is periodic.
(ii) ¥(ab) = ¥(a)(b), i.e., ¢ is strictly multiplicative.
(iii) The L-series of 1) converges absolutely on R(s) > 1 and there it satisfies

1
v = [[ s
p primes 1= ¢(p)p

Remark. This expression is called the Euler product for .
Proof. (i) v
(i) v
(iii) The coefficients of Ly (v, s) are 1p(n) so are bounded, hence by Proposition 3.4 (i)
we have absolute convergence on R(s) > 1. For £(s) > 1,

Yo = T A+¢@p*+v@)p > +-)
n=1

p prime
- 11 1
- _ —5
b oime L~ )P
where the expansion is justified by absolute convergence. O

Remark. ¢: (Z/NZ)* — C* with ¢y(n) = 1 for all n € (Z/NZ)* gives the trivial
Dirichlet character modulo N. In this case,

Ly(,s)=¢(s) [ —=p7)

pIN
p prime

where ((s) is the Riemann zeta function.
Theorem 3.6. Let N > 1 and ¢: (Z/NZ)* — C*.

(i) If 4 is the trivial character then Ly (v, s) has an analytic continuation to R(s) > 0
except for a simple pole at s = 1.
(i) If v is non-trivial then Ly (v, s) is analytic on R(s) > 0.

Proof. (i) Follows from the last remark and that ((s) has an analytic continuation to
C, except for a simple pole at s = 1.

(i)

A+N-1
Yoovm)= Y ¥n)
n=A ne(Z/NZ)*
= <¢7 H>
=0

as 1 # I. So the sums ZE:A 1(n) are bounded, and the result follows from
Proposition 3.4 (ii). O
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Theorem 3.7. Let ¢ be a non-trivial Dirichlet character modulo N. Then

Proof. Let
(n(s) = 11 Ln(x,s)

Xx: (Z/NZ)*—CX*

for R(s) > 1. Suppose that Ly(1),1) = 0. Then (y(s) has an analytic continuation
to R(s) > 0 by Theorem 3.6, the pole from Ly(I, s) having been killed by the zero of
Ln(¢,s) at s = 1.

On R(s) > 1, (n(s) has the absolute convergent Euler product

1
ws) =11 11 T x()p "
1

- 1111 1—x(p)p~*

p prime X
ptN

Now

[T - x(p)X) = (1 = XF)2MN/s

where f}, is the order of p modulo N and ¢ is the Euler totient function.

[Indeed, x(p) takes values that are f,th roots of unity, each occurring the same number
of times; finally

fp—1 4
[Ta-¢ x)=1-x%
=0

|

So on R(s) > 1, (n(s) has Dirichlet series obtained by expanding
Q-N(S) = H(]_ —’—pifps _|_ p72fps + pigfps _l_ [P )¢(N)/fp
ptN

By Proposition 3.3, as this series has positive coefficients and an analytic continuation
to R(s) > 0 it must converge in that region.

But the above series dominates

H(l +p—¢(N)S + p—2¢(N)5 _|_p—3¢(N)3 4. )

PIN
for s € R, s > 0, which is the Dirichlet series of Ly (I, ¢(N)s) which diverges when
5= ﬁ Contradiction. O]

Example. Let N =10, so Z/NZ)* = {1,3,7,9} = Cy, take ¢: (Z/10Z)* — C*,

Then
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3.3 Primes in Arithmetic Progression

Proposition 3.8. Let v be a Dirichlet character modulo N.
(i) The Dirichlet series

Z w(p)np—ns

4 n
primes p
n>1

converges absolutely on R(s) > 1 to an analytic function, and defines (a branch
of) log L (v, s) there.
(ii) If 9 is a non-trivial character then

Zi/f(p) p—ns
n
is bounded as s — 1. If ¢ =1 then

Z 1/1(]7) p—ns ~ lOg
n s—1

as s — 1.

Proof. (i) The series has bounded coefficients so converges absolutely on R(s) > 1 to
an analytic function by Proposition 3.4 (i).
Take a branch of the logarithm with

2 23

log(1 —r— T
og(l+z)=z 2+3

for small z. Then
1
log Ly (v, s) = logl;[ e
By continuity of the logarithm and convergence of the Euler product,
- Z log ;_
14
-y <¢(p)p_s PN () )

- 2 3
— Z w(p)npfns.
p,n

n

(ii) Follows from Theorem 3.7. If 4 is non-trivial then L(1), s) converges to a non-zero
value as s — 1, hence its logarithm is bounded near 1.
A

L(I,s) has a simple pole at s = 1, hence L(I,s) ~ 12, so log L(I,s) ~ -1 as

s — 1. O
Corollary 3.9. If ¢ is non-trivial then Zp prime ¥(p)p~* is bounded as s — 1. If ¢ is

trivial then Y ¢ (p)p™° = ZMN P~ log(sfll) as s — 1. In particular, it converges to
0.
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Proof.
S vl =log Lu(v.5) — > Y
p n>2
p prime

so it suffices to prove that the last term is bounded on #(s) > 1. But on R(s) > 1,

Z w(f;)np—ns < Z ‘w(f;)n -

n>2 n>2
p prime p prime
<Y
prs
p’rN
n>2

EZ@IUH—l

<2 — < 00 OJ

Theorem 3.10 (Dirichlet’s Theorem on Primes in Arithmetic Progressions). Let a, N >
1 be coprime. Then there are infinitely many primes p with p = a (mod N). Moreover,
if P, is the set of these primes then

Zi Lot
g o) Ts—1
as s — 1.

Proof. Notice that the first statement follows from the second. Let C, be the class
function Cy: (Z/NZ)* — C*,

um={ "5

So

Z s Z Ca(p)p_s

pEPa p prime
Now write C, as a sum of Dirichlet characters.

1

(CarX) = Ca(n)x(n)
XTom) (ZE/;VZ
_ x(a)
o(N)’

Hence Cy =3, ¢(( ))X So
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Each term on the right-hand side is bounded as s — 1 except for the contribution from
x =1 so

1 1 1 1
R S Jog ——
2 e 2 G BT

pPEP, MN

as s — 1 by Corollary 3.9. O

3.4 Dirichlet Characters

Recall that

(Z/NZ)* = Gal(Q(¢w)/Q)
a = 0oq oa(CN) = (¥

b= 0op ap(Cn) = (¥
If Q is a prime of Q((x) above p{ N then op = Frobg,p.

Notation. If F//K is a Galois extension of number fields with Gal(F/K) abelian, and
P is a prime of K unramified in F/K, write Frobp € Gal(F/K) for the Frobenius
element of any prime above P, independent of () above P as the decomposition groups
are conjugate, and I = 1 as P is unramified.

Theorem 3.11 (Hecke, 1920, Class Field Theory). Let F/K be a Galois extension
of number fields with Gal(F/K) abelian, and ¢: Gal(F/K) — C* a homomorphism.
Then

1
L*(djv 5) = H _
p primes of K 1- w(Fl“Obp)N(P) ’
unramified in F/K

has an analytic continuation to C, except for a simple pole at s = 1 when ¢ = 1.

Proof. Omitted. 0

Remark. When K = Q, F' = Q((x) this recovers Theorem 3.6, and more.

3.5 Artin L-Functions

Notation. If I < D are finite groups, p a D-representation, write
pl={vep:Ygel gv=0}
for the subspace of [-invariant vectors.
Remark. If I <D then p! is a D-subrepresentation. If v € p!, g € D, i € I then
i(gv) = g(i'v) = gv

for some i’ € I, so gv € p'.
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Definition. Let F//K be a Galois extension of number fields, let p be a Gal(F/K)-
representation. Let P be a prime of K, and choose ) a prime of F' above K, choose
Frobp to be an element of Dg,p which in DQ/P/IQ/P is Frobg,p, i.e., Frobp acts on
the residue field as Frobenius. Then the local polynomial of p at P is

Pp(p,T) = PP(F/K?va)
= det(l — T Frobp ‘ pIP)

Gal F/K )Ip

where Ip = I, p and the right-hand side is det(1 -7 Frobp) acting at (ReSDQ/P

Lemma 3.12. Pp(p,T) is independent of the choice of @) and Frobp.

Proof. For fixed @), independence of choice of Frobp is clear: another choice differs by
an element of I,p which acts as the identity at plerp.

If @ = gQ is another prime, g € Gal(F/K), then we can take Frob’, for Q' to be
gFrobp g~! and observe that eigenvalues (with multiplicities) of g Frobp g~*
agree with eigenvalues of Frobp on p’?, so have the same minimal polynomial and hence
give the same local factors. O

on ngPg71

Definition. Let F//K be a Galois extension of number fields, and p be a Gal(F/K)-
representation. The Artin L-function of p is defined by the Euler product

1
L(F/K,p,s)=L(p,s) = ] Prlp N(P)
K prime of K PP,

The polynomial Pp(p,T) has the form 1 — (aT + bT? + - - - + szimpI), S0 we can write

1
=14 (aT+bT?+ - )+ (aT+bT*+-- )2+

=14+apT +apT? +apsT?+--- .

Formally, substituting this into the above product gives the series expression (Artin
L-series)

L(p,s) = [[(1 + apN(P) ™ + apaN(P) > +--)
P

= ) axN(N)®

(0)£ANCOx
N ideal
for some ay € C.

Note that grouping ideals with equal norm yields an expression for L(p, s) as an ordinary
Dirichlet series.

Lemma 3.13. The L-series expression for L(p,s) agrees with the Euler product on
R(s) > 1, where both converge absolutely to an analytic function.
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Proof. 1t suffices to check that the double series
[ +apN(P)™* + apeN(P)7> +--)
P

converges absolutely on $(s) > 1 — this justifies both the Euler product and the series
expressions on R(s) > 1, then the analyticity follows from the expression of L(p, s) as
an ordinary Dirichlet series by Proposition 3.2.

The polynomial Pp(p,T') factorises over C as
Pp(p,T) = (1= MT)--- (1= XT)

with |\;| =1 and k£ < dim p. So the coefficients of
1 1
= =1+apT +apT?+---
Pp(p,T)  TL;(1=NT) d
are bounded in absolute value by those of

1
(1 _ T)dimp

=(1+T+T%+...)dime,

Hence o
. 1 :
I Slamlive) 7 < <d>
P prime above p >0 (1 -p ) e

where o = R(s) and we note a(;) = 1, whence

[T o) < (TT

P j>0 PR
— C(S)(dimp)[K:Ql

> (dim p)[K:Q]

as R(s) > 1. O

Example. (i) Let K = Q, F arbitrary, p = I. Then for a prime P = (p) of K, p'? = p
and Frobp acts as the identity on p’?. So Pp(p,T) = det(1 — T|I) = 1 — T. Thus

L(Ls) =TI, ks = C(5)
(ii) Let K, F be arbitrary, p = . Then

£t =TT {—gpys = s
j2

the Dedekind p-function of K.
(i) Let K =Q, F = Q({n), where N is prime, and p 1-dimensional nontrivial. Then

L(p,s) = Ln (¢, s)

where 1) is the Dirichlet character modulo N defined by ¥ (n) = p(o,) where
op € Gal(Q(CN)/Q) wich o,(n = (.

Notation. If p: G — GL,(C) is a representation then write
Tr (Z Aigi P) =Tr (Z )\ip(gi)) = Aixol9i);
det (Z AiGi p) = det (Z )\ip(gi)).
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3.6 Properties of Artin L-Functions

Proposition 3.14. Let F//K be a Galois extension of number fields and p be a repre-
sentation of Gal(F'/K).

(i) If 7 is another Gal(F'/K)-representation then
L(p ®7,5) = L(p, s)L(, ).

(ii) If N < Gal(F/K) and p is trivial on N so p comes from a representation p’ of
Gal(F/K)/N = Gal(FV /K) then

L(F/K,p,s) = L(FN/K,p,s).
Gal(F/K)

iii) (Artin Formalism) If p = Ind 7 for some H < (G, 7 an H-representation
(iii) ( p I : p
then

L(F/K,p,s) = L(F/FT 1, s).

Proof. 1t is sufficient to check each statement prime-by-prime for the local polynomials.
(i) Observe (p @ 7)F = plr & 71P.

(ii) Straight from the definition. Observe that Frobenius for F'/K projects to Frobenius
for FV /K and similarly for inertia.

(iii) Let Sp,..., Sk be the primes of FN above P and take @Q; to be a prime of F' above
Si, say Q = Q1, Q; = x;Q for some x; € Gal(F/K).

F Q1 e Qk
/
FN G=Gal(F/K) S e Sk
NN

It remains to show that

det(1 — T Frobgp | (Indf 7)'e/”) = [ det(1 — T/2:/" Frobg, s, | 7'@/5:).
S;

Step 1. Assume there is a unique prime in F' above P. Note that it suffices to show
the equality when 7 is irreducible. Write IndgT = @, 0i, where o; are irreducible
representations of G.

o If 71/ = () then I /s acts non-trivially on 7, so by Frobenius reciprocity I, p acts

non-trivially onc; and (o;,Ind 7) = (Reso;, 7). Then UiIQ/P =0 so (Ind7)le/P =0,
and now the result is trivial.

o If 77@/s 2 0 then Ig/g acts trivially on 7, so 7 is 1-dimensional, 7(Ig/g) = 1,
7(Frobg,s) = Cn, say. So

det(1 — T'Frobg g | T'e/s) =1 - ¢, T7.
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I
The o; on which Ig,/p acts non-trivially have O'iQ/ ¥ =0 so do not contribute. The

rest are 1-dimensional, o;(Ig,p) = 1 and 0;(Frobg,p) = (y,, say. Observe

f
Frob QS// ; = Frobg/s

up to inertia, so by Frobenius reciprocity, for each primitive (nfg, p)th root of

fs;/p — (o,

unity CnfS-/P’ with C exactly one such o; occurs in IndH T=0o;.

Therefore,
det (1 — Frobg,p | (Ind7)/@/?) = TJ(1 = (ugy, 1) =1 = G TP,
Step 2. General case.
Pp(Ind7,T) = det(1 — T Frobg,p|(Resg,, , Indfj 7)"e/?)
= det, <1 — TFron/P ) (@ Inde;Ql/Ij;xieDQ/p Resi;gzsz T‘”i>IQ/P>

1
Q/P x; Q/P)
(Ind _1DQ /S;Ti Resmi_lDQi/Sixi T )

= [T det(1 - TFrobg,p
S,

1

Do, Io.
= Hdet(l — TFI“ObQ/p ‘ (IndDZ’_;:_ Reng_/S. 7_) QZ/P>

i

hence, by Step 1,

= [T det(1 = /57 Frobgp, | (Resf, . 1)/

S;

=[] Ps.(r. T75/7) O
Sz

Proposition 3.15 (Artin’s Theorem). Let G be a finite group, p a G-representation.
Then there are cyclic subgroups H;, H; < G and 1-dimensional representations 7;, 7; of

H;, H]’ such that
0" @ @ Indgi Ti = @ Ind%, H; at
i

If (p,I) = 0 then 7; can be chosen to be non-trivial.

Proof. Slightly non-trivial exercise. O

Theorem 3.16 (Artin). Let F'/K be a Galois extension of number fields and p a repre-
sentation of Gal(F/K). Then there exists n > 1 such that L(p,s)"” admits a meromor-
phic continuation to C, analytic and non-zero at s = 1 if (p,I) = 0.

Proof. Proposition 3.15 and Artin Formalism reduce the problem to showing that L(r, s)
has analytic continuation to C when 7 is 1-dimensional, except possibly a pole at s =1
when 7 = 1.

This is true by Hecke’s Theorem and the fact that only finitely many primes ramify in
any extension of number fields, and L(7, s) is non-zero at s = 1. O
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Corollary 3.17. If p is irreducible and non-trivial then L(p, s) is bounded and non-zero
near s = 1.

Proof. Observe if F//K is cyclic then this is true by Theorem 3.11. O

Conjecture. If p is irreducible and non-trivial then L(p, s) has analytic continuation
to C.

Remark. Theorem 3.16 implies that L(p,s)™ is meromorphic. A theorem of Brauer
states that L(p, s) is meromorphic.

3.7 Density Theorems

Definition. Let S be a set of prime numbers. Then S has Dirichlet density « if

Z 1
pES pd
1
log =1
as s — 1 from above in R.

Example. By Dirichlet’s Theorem (Theorem 3.10), the set of all primes has density 1
and S, v = {p:p=a (mod N)} has density 1/¢(N) for a and N coprime.

Notation. For F//Q Galois and P unramified in F, write Frobp € Gal(F'/Q) for the
Frobenius element Frobg,p of some () above P. Note that Frobp lies in a well-defined
conjugacy class of Gal(F'/Q), because Frobg/p = xFrobg,p z~! where Q' = zQ for
some z € Gal(F/Q).

Example. F' = Q(¢x) and o, € Gal(F/Q) with o,(¢x) = (% then, for pt N, Frobp =
0o if and only if p = a (mod N), because Frobp({n) = (X

So by Dirichlet’s Theorem, the set Sy, = {p unramified in Q(¢x)/Q : Frob, = o} has
Dirichlet density 1/¢(N) = 1/|Gal(Q(¢n)/Q)| for every o € Gal(Q(¢n)/Q).

Theorem 3.18 (Chebotarev’s Density Theorem). Let F//Q be a finite Galois extension
and C a conjugay class in G = Gal(F/Q). Then the set S¢ = {p unramified in F/Q :
Frob, € C} has Dirichlet density |C|/|G].

Corollary 3.19. Let f(X) € Z[X] be monic and irreducible. Then the set of primes
p such that f(X) (mod p) factorises into irreducible polynomials of degrees di,...,d,
has Dirichlet density

{g € Gal(f) with cycle type (di,...,d,) in the action on roots}|

|Gal(f)]
Proof. f(X) (mod p) has a repeated root in F, for only finitely many p. For the rest,
Frob, acts as an element of cycle type (di,...,d,) where these are the degrees of the
irreducible factors of f(X) (mod p), by Corollary 2.5 and its proof. O

Example. Suppose f(X) is an irreducible quintic with Gal(f) = Ss.
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e The set of primes such that f(X) (mod p) is a product of linear factors has density
1/120.

e The set of primes such that f(X) (mod p) factorises into a cubic and a quadratic
has density

20 1
|S | 120 6

Corollary 3.20. If f(X) € Z[X] is monic and irreducible with deg f(X) > 2 then f(X)
(mod p) has no root in F, for infinitely many primes p.

|{elements of the form (--)(---) in S5}| =

Proof. Tt suffices to prove that there exists a g € Gal(f) that fixes no root of f(X). But
Ua: f(a)=0 Stabgai(s) (@) is smaller than Gal(f) as each has size |[Gal(f)[/[{a : f(a) = 0}

and contains the identity element.

Proof of Theorem 3.18. (i) By Example Sheet 1 Question 9, only finitely many primes
ramify in F//Q. By Corollary 3.17, if p # I is an irreducible representation of G

then
L*(,O, S) = H Pp(pap_s)_l

p unramified

is bounded and bounded away from zero near s = 1.
(ii) Write x, for the character of p, which is irreducible, and set
fols) = Z Xp(Frobp)p™*
p unramified
Then

Z p f= Z Cc(Frob,)p™*

pESC p unramified

= Z <C07Xp>fp(5)

p irreducible
_le,
pﬂ

where C.(g) is 1 if g € C and 0 otherwise. Now fi(s) ~ log(; 1) as s — 1 by
Theorem 3.10 and the first part, so it suffices to prove that f,(s) is bounded as
s — 1 for all irreducible p # L.

(iii) If p is unramified and Aj,..., Aq are the eigenvalues (with multiplicity) of Frob,
on p, then

1
log ——— =log =——F—
Py(p,p~*) [L(1—Xip~)

e
(Z)\)p—s+ (Z)\2> ~2s 4

=m@mmm*+§m@m%m*ﬁ%~.
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The Dirichlet series

PRI

p unramified n>1

has bounded coefficients, so by Proposition 3.8 and its proof defines an analytic
branch of log L.(p, s) on R(s) > 1; by the first part, it must be bounded as s — 1
on R(s) > 1.

O]

3.8 Appendix (Local Fields)

Definition. A place v in a number field K is an equivalence class of non-trivial absolute
values.

There are two types: Infinite places, i.e., archimedean absolute values, come from em-
beddings K — R or K — C and take

] K—>R
’$|U = 2 .
lz|* K —C

We note that complex conjugate embeddings give rise to the same absolute values. In
fact, this is the only case when two of these embeddings give equivalent absolute values,
and these are all the archimedean absolute values on K up to equivalence. The number
of infinite places is r1 + 9.

Finite places, i.e., non-archimedean absolute values, correspond to primes in K as follows.
If P is a prime, set |z|p = N(P)~°"9"®) where ordp(z) is, for 2 € O, the power of P
in the factorisation of (z) and extend this multiplicatively to K*. It is a fact that these
are inequivalent for different P and give all the non-archimedean absolute values up to
equivalence.

Note that |-|, makes K a metric space and its completion K, is a complete local field.
Henceforth assume that v is finite.
Example. e If K =Q and v corresponds to P = (p) then ||, = |-[, and K, = Q).

e If K is a number field and v corresponds to @ above p € Q then |-|, restricted to
Q is equivalent to |-|,. Therefore, K, is a finite extension of Q.

3.8.1 Residue fields and ramification

We consider the following setting. Let K be a number field, v a finite place corresponding
to @ and K, its completion. Moreover, let Ok, be its valuation ring and M, its unique
maximal ideal. Finally, le(v is the set of units in Ok, and k, = Ok, /M, the residue
field.

We observe that if Q C M, and Og C Ok, then the map
OK/Q - OKU/M’U = ky

is injective, as it is between fields, and surjective, as every element of K, can be approx-
imated by an element of K. Thus O /Q = k,.



36 L-Series

Let L/K be a finite extension of number fields and suppose that R lies above @ with
place w corresponding to R. One can check that ||, extends |-|,. Then L,,/K, is a
finite extension and, by comparing valuations,

€R/Q = Cw/vs fR/Q - fw/v'

3.8.2 Galois groups

Suppose that F//K is a Galois extension of number fields and let @ be a prime above P
with corresponding places w and v.

If g € Gal(F//K) preserves @, i.e., g € Dg,p, then g preserves |-|,, so g is also a
topological automorphism, so g extends to an automorphism of F},. Therefore, we have
a map

Dqyp — Gal(F,/K,)

which is clearly injective. The crucial fact is that it is also surjective. This is because
|Dg/pl = eq/pfa/p = €wwfwm = [Fuw : Ky] = |Gal(Fy/Ky)|.

We observe also that we have an isomorphism Ig,p — I/, as both act trivially on the
residue field and have the same size.

3.8.3 Applications

Proposition 3.21 (Proposition 1.22 revisited). If f(X) € Og[X] is Eisenstein with
respect to P and « is a root of f, then K(«)/K has degree deg(f) and P is totally
ramified in K(«)/K.

Proof. Translate the corresponding fact about local fields. O

Proposition 3.22. Decomposition groups (in number fields) are soluble.

Proof. 1t agrees with the Galois group of finite extensions of Q,. (Here I <G with G/I
cyclic, I; <« I with I/I; cyclic and I is a p-group.) O

Example. Suppose we are looking for a tower of extensions F'/Q((3)/Q such that F'/Q
is Galois with Gal(F/Q) = C4. This is impossible.

Proof. First observe that 3 ramifies in Q((3)/Q. Then 3 is totally ramified in F/Q
because the inertia group has to be all of Cy. Considering the completions, F,/Qs is
totally ramified and Galois with Gal(F,/Qs) = C4. But this is a totally and tamely
ramified extension. Therefore, Gal(F,/Q3) — F5, a contradiction. O
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