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Preface

In this thesis, we present an approach to computing in the algebraic de Rham cohomology spaces

associated to a family of projective hypersurfaces over a field of characteristic zero. We take a

special interest in such families containing a diagonal fibre. As a particular application, we con-

sider the computation of the action of the Gauss–Manin connection. While the general algorithm

is well-known in the literature, we demonstrate that a change in the implementation of the key

step, replacing an approach based on Gröbner basis computations by a direct method with sparse

matrices, improves the typical run-time of computations by several orders of magnitude.

The main body of this thesis is structured as follows. In Chapter 1, we introduce the main

objects of our study. We first consider algebraic de Rham cohomology spaces and the action of the

Gauss–Manin connection on these in some generality, but eventually restrict to the case of families of

hypersurfaces. In Chapters 2 and 3, we present detailed descriptions of the algorithms that form the

main focus of this work. In the former, we consider computations in de Rham cohomology, whereas

in the latter we use this to formulate an algorithm for computing the matrix of the Gauss–Manin

connection. We explicitly demonstrate the success of the new approach in Chapter 5, by comparing

our implementation of it with a pre-existing set of routines by Lauder. Finally, in Chapter 6 we

provide a list of suggestions which might further improve our current implementation.





Chapter 1

Introduction

In this chapter we introduce the main objects of our study. We are interested in the computation of

the Gauss–Manin connection matrix of the de Rham complex associated to a smooth hypersurface

in projective space. In the following sections, while we provide some background and references,

our aim is to provide a clean introduction and to arrive at a computationally feasible setup.

1.1 Algebraic de Rham cohomology

We begin by recalling some definitions and results from the algebraic theory of Kähler differentials.

We first consider affine sheaves via their underlying rings, following Hartshorne [11], and then extend

this to schemes.

Consider a ring A (commutative and with multiplicative identity), and let B be an A-algebra

and M a B-module.

Definition 1.1. An A-derivation of B into M is a map d : B → M which satisfies the following

three properties:

(i) d is additive;

(ii) the Leibniz rule holds: d(bb′) = bdb′ + b′db for all b, b′ ∈ B;

(iii) da = 0 for all a ∈ A.

Definition 1.2. A B-module Ω1
B/A together with an A-derivation d : B → Ω1

B/A is called a module

of relative differential forms if the following universal property is satisfied: for any B-module M

with an A-derivation d′ : B → M there is a unique B-module homomorphism f : Ω1
B/A → M such

that d′ = f ◦ d.

The existence of the (essentially unique) module of relative differential forms of B over A can

be shown by construction. Namely, we can consider the quotient of the free B-module generated
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by all symbols db, for b ∈ B, by the submodule generated by expressions of the three forms in

Definition 1.1 together with the derivation sending an element b to the image of db.

This construction can be generalised from affine sheaves to schemes via a glueing argument,

yielding the following result:

Proposition 1.3. Let π : X → S be a morphism of schemes. Then there exists a unique quasi-

coherent sheaf Ω1
X/S on X such that for any affine open subset V ⊂ S, any affine open subset

U ⊂ π−1(V ) and any x ∈ U we have

Γ(U,Ω1
X/S) ∼= Ω1

OX(U)/OS(V ), (Ω1
X/S)x ∼= Ω1

OX,x/OS,π(x)
.

Proof. See Liu [16, Proposition 6.1.17].

Definition 1.4. Let π : X → S be a morphism of schemes. The sheaf Ω1
X/S is called the sheaf of

relative 1-forms of X over S. For i ∈ N, we also define the sheaf of relative i-forms of X over S by

Ωi
X/S =

i∧
OX

Ω1
X/S

with the additional convention that Ω0
X/S = OX .

In the above situation, one can check that the derivation d : OX → Ω1
X/S induces a family of

maps, turning the above sequence of sheaves into a complex:

Proposition 1.5. Let π : X → S be a morphism of schemes. Then there exists a unique family of

maps d : Ωi
X/S → Ωi+1

X/S such that the following conditions are satisfied:

(i) d is π−1(OS)-linear and d(ab) = da ∧ b+ (−1)ia ∧ db for a homogeneous of degree i;

(ii) d ◦ d = 0;

(iii) da = dX/S(a) for a of degree zero.

Proof. See Illusie [13, §1].

Definition 1.6. This complex is called the (algebraic) de Rham complex. We refer to an i-form as

closed if it is in the kernel of d, and exact if it is in the image of d. Moreover, we define the relative

de Rham cohomology sheaf HidR(X/S) to be

HidR(X/S) = Riπ∗(Ω•X/S)

where Ri is the ith hyperderived functor of π∗. We refer to its global sections as the ith relative

de Rham cohomology of X over S and denote this by H i
dR(X/S).



1.2 Gauss–Manin connection 3

1.2 Gauss–Manin connection

In this section, we give a brief introduction to the Gauss–Manin connection in the algebraic sense,

following Katz and Oda [14]. We consider two smooth schemes X and S over a field K together

with a smooth K-morphism π : X → S.

Definition 1.7. A connection on a quasi-coherent OS-module E is defined to be a homomorphism ρ

of abelian sheaves

ρ : E → Ω1
S/K ⊗OS E

such that

ρ(se) = sρ(e) + ds⊗ e

for sections s and e of OS and E , respectively, over an open subset of S.

Remark 1.8. We observe that this can be extended to the whole de Rham complex as follows. For

every i ∈ N, given ω ∈ Ωi
S/K and e ∈ E let ω ∧ ρ(e) denote the image of ω ⊗ ρ(e) under the map

Ωi
S/K ⊗OS

(
Ω1
S/K ⊗OS E

)
→ Ωi+1

S/K ⊗OS E , ω ⊗ (τ ⊗ e) 7→ (ω ∧ τ)⊗ e.

We then obtain a homomorphism of abelian sheaves ρi given by

ρi : Ωi
S/K ⊗OS E → Ωi+1

S/K ⊗OS E , ω ⊗ e 7→ dω ⊗ e+ (−1)iω ∧ ρ(e).

Definition 1.9. The complex Ω•X/K admits a decreasing filtration given by

F j = Im
(

Ω•−jX/K ⊗OX π
∗(Ωj

S/K

)
→ Ω•X/K

)
.

Forming a spectral sequence {Er, dr}r≥0 as in Griffiths and Harris [9, §3.5, p. 440], we find that

Ei,j1 = Ωi
S/K ⊗OS H

j
dR(X/S).

The (algebraic) Gauss–Manin connection ∇GM is now defined as the differential d0,j
1 , i.e.,

∇GM = d0,j
1 : HjdR → Ω1

S/K ⊗OS H
j
dR(X/S).

Remark 1.10. From the description by Katz and Oda [14] and following the practical description

by Kedlaya [15], we can describe the action of the Gauss–Manin connection further in the case

when S is affine, say S = Spec(A). In this case, we may apply the global section functor Γ(S,−)

throughout and consider

∇GM : Hj
dR(X/S)→ Ω1

A/K ⊗A H
j
dR(X/S).
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The action of ∇GM can be computed as follows. Given ω ∈ Hj
dR(X/S), arbitrarily lift this to

ω̃ ∈ Ωj
X/K . Computing the exterior derivative, which decomposes as dX/K = dS + dX/S , the

image of ω under the Gauss–Manin connection is then given as the projection of dX/K(ω̃) onto

Ω1
A/K ⊗A H

j
dR(X/S).

1.3 Hypersurfaces in projective space

In this section we make the results from the previous sections concrete, specialising to the case of

hypersurfaces in projective space. In the development of a computationally feasible description of

the Gauss–Manin connection in this situation, we follow Abbott, Kedlaya and Roe [1, §3.2] when

computing in de Rham cohomology and Kedlaya [15, §3.2] when expressing the action of the Gauss–

Manin connection. We begin by setting the scene with some notation, which we shall use throughout

this thesis:

Notation 1.11. We consider a non-singular hypersurface X in Pn(K) × A1(K), where K is a

field of characteristic zero and n ≥ 2, defined by a homogeneous polynomial P ∈ K[t][x0, . . . , xn] of

degree d. We let U denote the open complement Pn(K)×A1(K)−X.

Moreover, we assume that we may also view this as two smooth K-schemes X and S together

with a smooth proper K-morphism π : X → S, where we consider an affine subspace S = Spec(A)

of the t-line. We denote the fibre of X above t in S by Xt.

Let us consider a smooth fibreXt. The embeddingXt ↪→ Pn(K) induces mapsH i
dR(Pn(K)/K)→

H i
dR(Xt/K), which by the Lefschetz hyperplane theorem [9, §1.2, p. 156] are bijective for 0 ≤ i ≤

n− 2 and injective for i = n− 1. A direct computation [1, Corollary 3.1.4] shows that H i
dR(Pn(K))

has, as a K-vector space, dimension 1 if i = 0, 2, . . . , 2n and 0 otherwise. Using Poincaré duality, it

then follows that, for all 0 ≤ i ≤ 2n− 2 with i 6= n− 1,

dimK H
i
dR(Xt/K) =

{
1 if i is even,
0 otherwise.

(1.1)

In particular, Hn−1
dR (Xt/K) is the only cohomology group that needs to be computed. Defining

Ut = Pn(K)−Xt, from [8, (10.16)], we have one of the following two exact sequences

0→ Hn
dR(Ut/K)→ Hn−1

dR (Xt/K)→ 0, (1.2)

0→ Hn
dR(Ut/K)→ Hn−1

dR (Xt/K)→ Hn+1
dR (Pn(K)/K)→ 0, (1.3)

as n is even or odd, respectively.
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Now define the n-form

Ω =
n∑
i=0

(−1)ixidx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn. (1.4)

A calculation as in [8, §4] then shows that the above cohomology groupHn
dR(Ut/K) is isomorphic as a

K-vector space to the quotient of the group of n-forms QΩ/P k with k ∈ N and Q ∈ K[x0, x1, . . . , xn]

homogeneous of degree kd− (n+ 1) by the subgroup generated by

(∂iQ)Ω
P k

− kQ(∂iP )Ω
P k+1

(1.5)

for all 0 ≤ i ≤ n, where here and in the following ∂i denotes the partial derivative operator with

respect to xi.

Since the fibres of the relative de Rham cohomology H i
dR(X/S) can be identified with the

de Rham cohomology H i
dR(Xt/K) of the fibres, it follows that we can calculate the action of

the Gauss–Manin connection ∇GM : Hn−1
dR (X/S) → Ω1

A/K ⊗A H
n−1
dR (X/S) via the induced map

Hn
dR(U/S) → Ω1

A/K ⊗A H
n
dR(U/S), which by abuse of notation we shall refer to as ∇GM , too. Let

ω ∈ Hn
dR(U/S), where we may assume it is of the form QΩ/P k as described above. Since S is an

affine curve, we have that Ω1
A/K is free of rank one, generated by the symbol dt. Then the action of

∇GM is given by

∇GM : ω 7→ dU (ω) = dS(ω) + dU/S(ω) =
∂

∂t
ω ∧ dt (1.6)

where the term dU/S(ω) vanishes by definition of Ω. We will describe how a unique representative

can be obtained for the right-hand side in Chapters 2 and 3.





Chapter 2

Computing in de Rham Cohomology

This chapter is devoted to an in-depth description of the computation in de Rham cohomology,

exploiting the vector space isomorphism given in Section 1.3 of the introduction. In the first section,

we begin by setting up the notation and then describe the so-called reduction of poles in some

generality. A particular problem, that of finding the coordinates of an element of a multivariate

polynomial ideal, is treated as a black box, but we turn to it in the second section where we specialise

to the case when the family of projective hypersurfaces contains a diagonal fibre. Finally, we provide

further details on the matrix computations involved in the third section.

2.1 Reduction of poles

This section is based on [1, Remark 3.2.5], describing a reduction of poles procedure also referred

to as the Griffiths–Dwork method. We continue with the same Notation 1.11, but since for large

parts of the discussion it will not matter that K(t) is a function field, we also define L = K(t).

From the description of Hn
dR(U/S) in the introduction, with its elements being represented by

n-forms QΩ/P i for i ∈ N, it is clear that it can be equipped with a filtration whose ith part

consists of all elements which can be represented by n-forms as above with degQ = kd− (n+ 1) for

1 ≤ k ≤ i+ 1.

We can obtain a basis for Hn
dR(U/S) respecting this filtration as follows. For every k ∈ N, we

find an independent set Bk of polynomials of degree kd−(n+1) generating the quotient of the space

of all such polynomials by the Jacobian ideal (∂0P, . . . , ∂nP ). This yields a generating set
⋃
k∈N Bk

for Hn
dR(U/S) where Bk = {QΩ/P k : Q ∈ Bk}. However, it follows from a theorem of Macaulay [8,

§4, (4.11)] that in fact the set B1 ∪ · · · ∪ Bn already forms a generating set. In Section 2.2, we

shall exhibit an explicit basis of monomials in the case where the family of projective hypersurfaces

contains a diagonal fibre.

Now, to obtain a unique representative for the class of QΩ/P k in terms of the basis elements
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in B1 ∪ · · · ∪ Bn, we express Q in terms of ∂0P, . . . , ∂nP as well as elements of Bk, and then

iteratively reduce the pole order of the first part according to the relations given by the expressions

from Equation (1.5). Assume that we have at our disposal a method Decompose which, given a

polynomial Q of degree kd−(n+1) lying in the ideal generated by the Jacobian ideal (∂0P, . . . , ∂nP )

together with the set Bk, returns an expression of the form Q = Q0∂0P + · · · + Qn∂nP + γk with

Q0, . . . , Qn homogeneous polynomials in L[x0, . . . , xn] and γk in the L-span of Bk. The reduction of

poles procedure can then be formalised as in Algorithm 1 below, which we will refer to as Reduce.

In this generality, the correctness of the algorithm depends on a theorem of Macaulay [8, §4, (4.11)].

Algorithm 1 Reduce QΩ/P k in cohomology

Input: • P is a homogeneous polynomial in L[x0, . . . , xn] of degree d, defining a non-singular
hypersurface, where L is a field of characteristic zero.
• For 1 ≤ k ≤ n, Bk is a basis for all homogeneous polynomials of degree kd− (n+ 1) modulo

the Jacobian ideal (∂0P, . . . , ∂nP ).
• Q is a homogeneous polynomial of degree kd− (n+ 1).

Output: Polynomials γi in the L-span of Bi, for 1 ≤ i ≤ n, such that QΩ/P k ≡ γ1Ω/P 1 + · · · +
γnΩ/Pn.
procedure Reduce(P,B1, . . . , Bn, Q)

while k ≥ n+ 1 do
Q0, . . . , Qn ← Decompose(Q, ∂0P, . . . , ∂nP,Bk)
k ← k − 1
Q← 1

k

∑n
i=0 ∂iQi

end while
γk+1, . . . , γn ← 0
while Q 6∈ Bk do

Q0, . . . , Qn ← Decompose(Q, ∂0P, . . . , ∂nP,Bk)
γk ← Q−

∑n
i=0Qi∂iP

k ← k − 1
Q← 1

k

∑n
i=0 ∂iQi

end while
if Q 6= 0 then

γk ← Q
k ← k − 1

end if
γ1, . . . , γk ← 0
return γ1, . . . , γn

end procedure

2.2 Reduction of poles using linear algebra

In this section, we specialise to the case of a smooth family of projective hypersurfaces containing

a diagonal fibre. In this case, we exhibit a basis of monomials B1 ∪ · · · ∪ Bn such that the corre-
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sponding set B1 ∪ · · · ∪ Bn forms a basis for Hn
dR(U/S) and re-express the problem of decomposing

a homogeneous polynomial from the previous section in the language of linear algebra. From this

description, we furnish an explicit reduction procedure in terms of matrices. The approach is based

on a generalisation of Sylvester matrices from two polynomials to n + 1 polynomials, following

Macaulay [17].

The decomposition problem from the previous section can be formulated as follows:

Problem 2.1. Given a homogeneous polynomial Q ∈ L[x0, . . . , xn] of degree kd− (n+ 1), for some

k ∈ N, we try to find homogeneous polynomials Q0, . . . , Qn in L[x0, . . . , xn] such that

Q ≡ Q0∂0P + · · ·+Qn∂nP (2.1)

modulo the L-span of Bk.

Remark 2.2. Immediately, we see that, for each 0 ≤ i ≤ n, either Qi is identically zero or has

degree (k − 1)d − n since ∂iP is homogeneous of degree d − 1 and also the elements of Bk have

degree kd− (n+ 1).

For the remaining part of this section, and in fact this thesis, we consider the following basis

sets Bk, for k ∈ N, which as in the previous section induce a generating set B1∪· · ·∪Bn of Hn
dR(U/S)

as an L-vector space respecting the aforementioned filtration:

Notation 2.3. Given a multi-index i = (i0, . . . , in) ∈ Nn+1
0 , we let xi denote the monomial

xi00 · · ·xinn and set |i| = i0 + · · ·+ in.

Definition 2.4. For k ∈ N, we define the following sets of monomials,

Fk = {xi : |i| = kd− (n+ 1)}, (2.2)

Bk = {xi : |i| = kd− (n+ 1) and ij < d− 1 for 0 ≤ j ≤ n}. (2.3)

Moreover, we let Fk denote the L-vector space spanned by the n-forms xiΩ/P k for xi ∈ Fk and Bk
denote the set of n-forms xiΩ/P k with xi ∈ Bk.

We shall defer the proof of the statement that the corresponding set B1 ∪ · · · ∪ Bn indeed forms

a basis of Hn
dR(U/S), at least in the case when the family of hypersurfaces given by P contains a

diagonal fibre, until the end of this section.

Assumption 2.5. In order to ensure that our computations are not vacuous, we assume that

Hn
dR(U/S) 6= 0. After setting

` =
⌈
n+ 1
d

⌉
, u =

⌊
(n+ 1)(d− 1)

d

⌋
= n+ 1− `, (2.4)
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we note that Bk is non-empty if and only if ` ≤ k ≤ u. The assumption is thus equivalent to ` ≤ u.

Finally, it can easily be verified that this is equivalent to the statement that d ≥ 2 whenever n is

odd and d ≥ 3 whenever n is even.

When considering Problem 2.1, it turns out that, in the case when the family of hypersurfaces

given by P contains a diagonal fibre, we can place further restrictions on the polynomials Q0, . . . , Qn.

We thus consider the following problem instead:

Problem 2.6. Given a homogeneous polynomial Q ∈ L[x0, . . . , xn] of degree kd− (n+ 1), for some

k ∈ N, we try to find homogeneous polynomials Q0, . . . , Qn in L[x0, . . . , xn] such that

Q ≡ Q0∂0P + · · ·+Qn∂nP (2.5)

modulo the L-span of Bk. Moreover, for each 1 ≤ j ≤ n, the polynomial Qj may only contain non-

zero coefficients for monomials of degree (k−1)d−n that are not divisible by any of the monomials

xd−1
0 , . . . , xd−1

j−1 .

Definition 2.7. For k ∈ N, we define the following sets of monomials in L[x0, . . . , xn]. Let Rk =

Fk−Bk, containing the monomials of total degree kd− (n+1) and partial degree at least d−1 with

respect to some of the n+ 1 variables. Let C(0)
k be the set of monomials of total degree (k− 1)d−n,

and then inductively, for j = 1, . . . , n, define C(j)
k to be the set of monomials in C(j−1)

k except for

those divisible by xd−1
j−1 . Moreover, we define the multi-set Ck as the disjoint union of C(0)

k , . . . , C(n)
k .

We shall write an element of this multi-set as (j, g), referring to a monomial g in C(j)
k .

With this set-up, the following theorem provides a solution to Problem 2.6 in the cases that we

are interested in:

Theorem 2.8. Suppose that the family of projective hypersurfaces given by the polynomial P in

K[t][x0, . . . , xn] contains a diagonal fibre. Let k ∈ N and suppose that Rk and Ck are non-empty.

For 0 ≤ j ≤ n, let V (j)
k be the L-vector space of polynomials with basis C(j)

k , and let Vk denote their

cartesian product Vk = V
(0)
k × · · · × V (n)

k . Let Wk be the L-vector space of polynomials with basis

Rk. Then the L-linear map

φk : Vk →Wk, (Q0, . . . , Qn) 7→ Q0∂0P + · · ·+Qn∂nP (2.6)

is an isomorphism of L-vector spaces.

Proof. We first show that, for all k ∈ N, the multi-sets Rk and Ck have the same cardinality:



2.2 Reduction of poles using linear algebra 11

We construct the following bijection Rk → Ck, representing the monomials by their exponent

tuple. Let i = (i0, . . . , in) be in Rk. If i0 ≥ d−1, we define the image as (i0−d−1, i1, . . . , in) ∈ C(0)
k .

More generally, if i0 < d − 1, . . . , ij−1 < d − 1 and ij ≥ d − 1, the image is (i0, . . . , ij−1, ij − d −

1, ij+1, . . . , in) ∈ C(j)
k . It is easy to verify that this map is indeed a bijection.

In order to establish that the map φk : Vk → Wk is an isomorphism of L-vector spaces, we now

exhibit its matrix with respect to the given basis:

Let k ∈ N and suppose that Rk and Ck are non-empty, that is to say, k ≥ n/d + 1. We define

the auxiliary matrix ∆k with row and column index sets Rk and Ck, respectively, as follows. Given

f ∈ Rk and (j, g) ∈ Ck, we set the corresponding entry in ∆k to be the monomial coefficient of f/g

in ∂jP if g divides f and 0 otherwise. It is immediate that ∆k is the matrix representing φk with

respect to the bases Ck and Rk of Vk and Wk, respectively.

The assumption that the family X of projective hypersurfaces given by P contains a diagonal

hypersurface means that for some t0 the fibre Xt0 is given by an equation of the form

Pt0(x0, . . . , xn) = α0x
d
0 + · · ·αnxdn = 0 (2.7)

with α0, . . . , αn ∈ K×.

We aim to show that the determinant of ∆k is non-zero in L. Since the specialisation to the

diagonal fibre viz. evaluation of the matrix at t = t0 commutes with computing the determinant, it

suffices to show that the determinant of (∆k)
∣∣
t=t0

is non-zero in K.

Since, for 0 ≤ j ≤ n, ∂jPt0(x0, . . . , xn) = dαjx
d−1
j , there is precisely one non-zero entry in each

column of ∆k. Namely, in column (j, g) ∈ Ck and row gxd−1
j ∈ Rk there is the non-zero entry dαj .

Thus, the determinant of (∆k)
∣∣
t=t0

is given by the product of all its non-zero entries, which implies

that it is non-zero, concluding the proof.

In principle, by including any of the numerous methods available for solving linear equations,

we are in a position to furnish a routine Decompose, which we formalise in Algorithm 2.

We conclude this section by establishing that the set B1∪· · ·∪Bn is indeed a basis for Hn
dR(U/S),

as claimed earlier, using the reduction of poles procedure.

Theorem 2.9. Suppose that the family of projective hypersurfaces given by P contains a diagonal

fibre. Then the set B1∪· · ·∪Bn defined in Definition 2.4 is a basis for the L-vector space Hn
dR(U/S).

Proof. We know that Hn
dR(U/S) is spanned by the classes of the n-forms QΩ/P k for all homogeneous

polynomials Q of degree kd− (n+ 1) and k ∈ N. By a theorem of Macaulay [8, §4, (4.11)], we may

assume that 1 ≤ k ≤ n, that is to say, any class in Hn
dR(U/S) can be represented by an n-form with

a pole of order at most n.
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Algorithm 2 Obtain co-ordinates for Q in the Jacobian ideal modulo basis elements
Input: • Q is a homogeneous polynomial of degree kd− (n+ 1).

• ∂0P, . . . , ∂nP are the partial derivatives of a homogeneous polynomial P in K[t][x0, . . . , xn]
of degree d, which defines a smooth family of projective hypersurfaces containing a diagonal
fibre, where K is a field of characteristic zero.
• Bk is the set of all monomials of total degree kd− (n+ 1) and partial degree less than d− 1.

Output: Homogeneous polynomials Q0, . . . , Qn such that Q ≡ Q0∂P0 + · · · + Qn∂nP modulo the
K(t)-span of Bk.
The multi-sets Rk and Ck are as in Definition 2.7, the matrix ∆k is as in the proof of Theorem 2.8.
procedure Decompose(Q, ∂0P, . . . , ∂nP,Bk)

Step I. Let b be the vector of length |Rk| such that the entry corresponding to the monomial
xi ∈ Rk is the coefficient of xi in Q.

Step II. Let v be the unique vector of length |Ck| satisfying ∆kv = b. From the description of Ck
as a disjoint union, we can write v accordingly as

(
v(0), . . . , v(n)

)
where, for 0 ≤ j ≤ n,

v(j) is a vector of length |C(j)
k |.

Step III. For j = 0, . . . , n, set Qj =
∑

g∈C(j)k
v

(j)
g g, where v(j)

g is the entry in v(j) corresponding

to the monomial g ∈ C(j)
k .

Step IV. return Q0, . . . , Qn

end procedure

Without loss of generality, we may thus start the reduction of poles procedure with a homo-

geneous polynomial Q of degree (n + 1)d − (n + 1). Then, since Bn+1 = ∅ and Rn+1 = Fn+1,

Theorem 2.8 shows that there exist homogeneous polynomials Q0, . . . , Qn either zero or homoge-

neous of degree nd− (n+ 1) such that Q = Q0∂0P + · · ·+Qn∂nP . Continuing with the reduction of

poles procedure as described in Algorithm 1, we obtain an expression for QΩ/Pn+1 as an L-linear

combination of elements in B1∪· · ·∪Bn. This shows that this set spans the vector space Hn
dR(U/S).

To see that this set is linearly independent, note that it contains only monomials whose partial

degrees are strictly less than d− 1. However, since P is a homogeneous polynomial of degree d and

the family of hypersurfaces contains a diagonal fibre, it follows that, for each 0 ≤ i ≤ n, the partial

derivative ∂iP is a homogeneous polynomial of degree d − 1 and contains precisely one monomial

term with partial degree equal to d − 1, namely that of the monomial xd−1
i . It follows that the

elements of B1 ∪ · · · ∪Bn cannot be reduced further modulo the Jacobian ideal and hence that the

set B1 ∪ · · · ∪ Bn is linearly independent.

2.3 Sparse matrix techniques

In this section we present a technique for repeatedly solving a sparse system of linear equations as

in Step II. of Algorithm 2. The methods we present in this section are discussed in great detail in
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a survey by Reid [18].

Before continuing, let us briefly justify why spare matrix methods are appropriate in this case:

Remark 2.10. Let σ and σ0, . . . , σn denote the number of non-zero terms of the polynomials P

and ∂0P, . . . , ∂nP , respectively. We observe that the auxiliary matrix ∆k described in the proof of

Theorem 2.8 contains at most σj non-zero entries in column (j, g), since the non-zero entries in this

column are coefficients of the polynomial ∂jP corresponding to monomials in Rk via multiplication

by g. In particular, the number of non-zero entries in the matrix is bounded above by σ |Rk|.

Notation 2.11. In order to simplify the notation to what is relevant in this section, we shall

consider the system of linear equations given by

Ax = b (2.8)

where A is a non-singular n × n matrix over a field of characteristic zero. Moreover, for later

reference we let τ denote the number of non-zero entries in A.

Our first observation is that the reduction of poles procedure from the previous section requires

a linear system as in Equation (2.8) to be solved multiple times for the same matrix A but with

different column vectors b, which suggests using an approach involving some pre-processing on the

matrix A. A popular such approach is the LUP decomposition.

The LUP decomposition of matrix A is a way of performing the classical Gaussian elimination

with bookkeeping. It consists of a permutation matrix P , a unit lower-triangular matrix L and an

upper triangular matrix U such that PA = LU . Once these are known, the original system can be

solved in a two step process as

Ly = Pb, Ux = y (2.9)

which consists of two triangular systems. We briefly note that, using a standard dense approach [2],

the LUP decomposition can be computed using a number cubic in n of operations in the base field,

and that solving the two triangular systems only requires a number quadratic in n of operations in

the base field.

However, assuming that the matrix A is sparse, with further pre-processing a much better

performance can be realised. As a first step, not in its own right but as prerequisite to the next

step, we permute the rows of the matrix to ensure that the diagonal contains only non-zero entries.

We can achieve this here because we assume that the matrix is non-singular. Effectively, this problem

is the same as that of computing a perfect matching in the n × n bipartite graph with vertex sets

{vi}ni=1 and {wi}ni=1, where an edge viwj is present if and only the element Aij is non-zero. If we
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find a perfect matching {vπiwi}ni=1 in the form of a permutation π ∈ Sn, then, after defining the

permutation matrix P0 via

(P0)ij =

{
1 if j = πi,

0 otherwise,
(2.10)

we conclude that P0A has a zero-free diagonal. A detailed discussion of this problem together with

an implementation can be found in the work of Duff [4, 3]. We end our discussion here by quoting the

worst-case and experimental average-case complexity results as O(τn) and O(τ + n), respectively.

The second step is to compute the block-triangularization of the matrix P0A. We compute a

permutation matrix Q0 such that the matrix Q0P0AQ
t
0 is block-triangular, that is, is of the form

Q0P0AQ
t
0 =


A(11)

A(21) A(22)

...
. . .

A(N1) A(N2) . . . A(NN)

 (2.11)

where each diagonal block A(kk) is square and can itself not be symmetrically permuted to block-

triangular form. Again an asymptotically optimal algorithm for this problem stems from the realm

of graphs: it is Tarjan’s linear time algorithm for computing the strongly connected components

in a directed graph. In this setting, its asymptotic complexity is given by O(n + τ). For further

information, we refer to the joint work of Duff and Reid [6, 5].

Finally, this enables us to solve N potentially much smaller systems of linear equations instead

of the one we started with. We can rewrite our original system of equations Ax = b as A′y = c

where A′ = Q0P0AQ
t
0, y = (Qt0)−1x and c = Q0P0b and now use the fact that this system is

block-triangular. This allows us to instead solve the sequence of systems of linear equations

A(kk)yk = ck −
k−1∑
j=1

A(kj)yj (2.12)

for k = 1, . . . , N , where we implicitly think of the column vectors y and c to be divided into N

corresponding blocks y1, . . . , yN and c1, . . . , cN . An important consequence of this approach is that

after the above two steps of pre-processing, the off-diagonal blocks are not changed further; in

particular, the phenomenon of fill-in during Gaussian elimination, which refers to the introduction

of new non-zero entries, is limited to the diagonal blocks.



Chapter 3

Computing the Gauss–Manin
Connection Matrix

We now describe the action of the Gauss–Manin connection ∇GM on basis elements of Hn
dR(U/S).

Suppose that we are given a basis element xiΩ/P k ∈ Bk, where for 1 ≤ k ≤ n the set Bk is defined

as in Definition 2.4. Following the description in Section 1.3, the action of the connection is given

by exterior differentiation, that is, differentiation with respect to t. We first compute

d

dt

(
xiΩ
P k

)
=
−kxiPtΩ
P k+1

, (3.1)

where Pt = dP/dt. The second step is to repeatedly apply the reduction of poles procedure in

de Rham cohomology in order to express the n-form above as

d

dt

(
XiΩ
P k

)
≡ γk+1Ω

P k+1
+ · · ·+ γ1Ω

P
(3.2)

where, for 1 ≤ i ≤ k + 1, γi is an element in the K(t)-span of Bi.

We formalise this for later reference in Algorithm 3.
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Algorithm 3 Computing the Gauss–Manin connection matrix
Input: Homogeneous polynomial P in K[t][x0, . . . , xn] of degree d, which defines a smooth family

of projective hypersurfaces containing a diagonal fibre, where K is a field of characteristic zero.
Output: • Basis B1 ∪ · · · ∪Bn for Hn

dR(U/S).
• Matrix M for the Gauss–Manin connection on Hn

dR(U/S) with respect to this basis.
procedure GMConnection(P )

Step I. Compute the partial derivatives ∂0P, . . . , ∂nP and the exterior derivative dP/dt.
Step II. Compute the basis sets B1, . . . , Bn. In the following, we use the convenient way to

index their union by (i, f), referring to a polynomial f ∈ Bi.
Step III. Compute the auxiliary matrices ∆k, for k = bn/dc + 1, . . . , n + 1, and perform pre-

processing on each auxiliary matrix as described in Sections 2.2 and 2.3.
Step IV. For all (j, g) ∈

⋃n
k=1Bk, let Q = −jgPt and set γ1, . . . , γn to the output of

Reduce(P,B1, . . . , Bn, Q). Then, for each (i, f) ∈
⋃n
k=1Bk, let M(i,f),(j,g) be the

coefficient of f in γi.
Step V. return B1 ∪ · · · ∪Bn, M

end procedure
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Complexity Analysis

In this section we develop a complexity analysis for the computation of the Gauss–Manin connection

following our algorithm outlined before. We shall make one major simplifying assumption, namely

that field artihmetic in K(t) and integer arithmetic can be realised in constant space and time. As

some examples in Chapter 5 show, this assumption can be far from true; however, it is hoped that

this analysis nonetheless provides a useful starting point.

4.1 Main analysis

We begin by gathering a few estimates of quantities we shall use later. First, we compute the size

of the Gauss–Manin connection matrix itself. From the Hodge diamond, we find that

dimK(t)H
n
dR(U/S) =

n∑
k=1

|Bk|

= (−1)n
(
n− d

n−1∑
j=0

(
n+ 1
j

)
(−d)n−1−j

)

=
d− 1
d

(
(d− 1)n − (−1)n

)
.

(4.1)

The size of the row index sets Rk, for k = 2, . . . , n + 1, as well as the graded parts Bk of the

basis, for k = 1, . . . , n can be bounded above by
(
kd−1
n

)
, since this is the number of monomials in

n+ 1 variables of total degree kd− (n+ 1).

A useful inequality for binomial coefficients in this context is (α/β)β ≤
(
α
β

)
≤ (αe/β)β for

integers 0 < β ≤ α, where e =
∑∞

m=0 1/m!. We thus find, for k = 1, . . . , n + 1, that
(
kd−1
n

)
is

O((de)n) and that log
(
kd−1
n

)
is O(n log d).

In the following, we consider the various steps involved in the computation of the connection

matrix as outlined in Algorithm 3.

Step I. The computation of the Jacobian ideal (∂0P, . . . , ∂nP ) and the derivative ∂P/∂t depends,

of course, on the exact representation used for multivariate polynomials. But a valid estimate is
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given by O(nσ log σ) for time and O(nσ) for space, where here and in the following σ denotes the

number of terms in P .

Step II. The computation of the basis sets B1, . . . , Bn can be accomplished in linear time and

space, that is, an asymptotic estimate for each is given by O(dn).

Step III. The next step is the computation and pre-processing of the auxiliary matrices. We

consider each matrix ∆k separately.

As the number of non-zero entries in each column (j, g) ∈ Ck is at most σ, the total number of

non-zero entries is bounded by σ
(
kd−1
n

)
. We thus obtain a space estimate of O(σ(de)n). In fact, to

quickly deal with the overall space complexity, note that all subsequent work with the matrix ∆k

involves at most a constant number of temporary rows, thus giving an overall estimate of O(σ(de)n).

If we compute the entries in the matrix by firstly ranging over all columns, secondly ranging over

all monomial terms in appropriate partial derivative of P and then performing a binary search to

find the correct row, a time estimate of O
(
(de)nσn log d

)
can be achieved.

The next two stages of pre-processing, ensuring that the matrix has a zero-free diagonal and the

block-triangularisation, take time bounded by O
(
σ(de)2n

)
. Suppose now that this step results in

a partition of |Rk| as n(1)
k + · · · + n

(Nk)
k . Then the subsequent LUP decomposition takes time

O
((
n

(1)
k

)3 + · · ·+
(
n

(NK)
k

)3).
Step IV. For each column in the Gauss–Manin connection matrix, we create a polynomial cor-

responding to the basis element to be reduced. Here, the process of creating the polynomial is

irrelevant, and we only need to the consider the reduction process and the extraction of the specific

coefficients afterwards.

We first develop a bound for Algorithm 1. For the moment, we ignore the subroutine Decompose

but take into account the time it takes to transform a polynomial into a vector and vice versa. For

a polynomial of degree kd − (n + 1) this takes time O
(
|Rk| log

(
kd−1
n

))
, which is O((de)nn log d),

and space O
((
kd−1
n

))
, which is O((de)n). Checking whether a polynomial of degree kd− (n+ 1) lies

in Bk and if necessary reducing the pole order of the associated element in Hn
dR(U/S) by one takes

time

O
(
n

(
kd− 1
n

))
+O

(
n

(
kd− 1
n

)
σ log

((
kd− 1
n

)
σ

)
σ

)
+O

(
n

(
kd− 1
n

)
log
(
kd− 1
n

))
,

which is O
(
n2(de)nσ log d

)
. It takes space O

(
σ
(
kd−1
n

))
, which is O(σ(de)n).

Therefore, by using the upper bounds for the case k = n when k ranges through 1, . . . , n, we

obtain the following weak upper bound as an estimate for the total time required by Algorithm 1
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throughout the computation of the connection matrix,

O
( n∑
k=1

|Bk|n3(de)nσ log d
)
,

which is O
(
d2nenn3σ log d

)
. Since the space requirements do not hold simultaneously, an estimate

for the total space required is just O(σ(de)n).

We now attend to the subroutine Decompose. A call to Algorithm 1 with a polynomial of degree

kd − (n + 1) triggers calls to Decompose possibly for all values k, k − 1, . . . , 2. In particular,

the number of calls to Decompose with parameter k, for k = 2, . . . , n + 1, is bounded above by

|Bk−1|+ |Bk|+ · · · |Bn|, which we relax to O(dn).

Solving an instance of the system of linear equations given by ∆k takes time O
((
n

(1)
k

)2 + · · · +(
n

(Nk)
k

)2), and it takes no additional space.

Summarising all steps, the time estimate we arrive at is given by

O
(
nσ(de)2n + d2nenn3σ log d+ dn

n+1∑
k=2

(
(n(1)
k )2 + · · ·+ (n(Nk)

k )2
)

+ n
n+1∑
k=2

(
(n(1)
k )3 + · · ·+ (n(Nk)

k )3
))

and the total amount of space required can be bounded by O(n(de)nσ).

In order to simplify this further, we consider two special cases. In the worst case the block-

triangularisation of ∆k, for k = 2, . . . , n, results in one block. In this case, the above estimate

simplifies to

O(n2(de)3n + n3d2nenσ log d).

In the sparse case, which is much more typical, the block-triangularisation results in a linear number

of blocks of constant size. In that case, the estimate we obtain is

O(n(de)2nσ + n3d2nenσ log d).

4.2 Multivariate polynomials

For reference, we provide some complexity results for the basic operations in the multivariate poly-

nomial ring K(t)[x0, . . . , xn]. The performance, of course, depends on the data structures and

algorithms used: we base the following results on a basic representation of multivariate polynomials

backed by balanced binary trees with monomials packed into single integers. While more specialised

representations exist, for the moment we make the above choice since here the multivariate polyno-

mial arithmetic does not seem to be a principal limiting factor and because this choice is easy to

implement with small overhead.
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We present the estimates in Table 4.1, where the letters f, g, h denote polynomials, m a monomial

and c an element in the base field K(t). Moreover, σf , σg and σh denote the number of non-zero

terms in f , g and h, respectively. Finally, the operation c ← Coeff(f,m) refers to extracting

the coefficient c of the monomial m from the polynomial f . Note that the space complexity only

considers the amount of space that needs to be allocated for the computation of the operation, that

is, it does not include space already allocated holding the input.

Table 4.1: Complexity bounds for operations in K(t)[x0, . . . , xn]

Operation Time Space

f ← g O(σf + σg) O(σg)
f ← f ± g O(σg log(σf + σg)) O(log σf + σg)
f ← g ± h O(σf + σg + σh log(σg + σh)) O(σg + σh)
f ← f ± cm O(log σf ) O(1)
c← Coeff(f,m) O(σf ) O(1)
f ← cf O(σf ) O(log σf )
f ← cg O(σf + σg) O(σg)
f ← gh O(σgσh) O(σgσh)
f ← f ± gh O(σgσh log(σf + σgσh)) O(σgσh)
f ← ∂ig O(σg log σg) O(σg)
f ← ∂g/∂t O(σg log σg) O(σg)
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Examples

In this chapter, we present a few numerical examples. For each example, we include a comparison

of the run-time and memory usage of a previously existing Magma routine1by Lauder and our new

implementation in C. The Magma code was executed on the machine wolverine at the Mathemat-

ical Institute, comprising eight Dual Core AMD Opteron processors running at 2.2GHz as well as

32GB of memory and running Magma version 2.15-12. The new implementation was executed on

a personal laptop with two Intel Core 2 Duo processors at 2.26GHz and 2GB of memory. Finally,

we note that, for the smallest examples, the comparison of the memory requirements is not fair in

the sense that, even without executing user specific code, the Magma set-up available to the author

required about 7.19MB of memory and therefore only the excess of this should be attributed to

Lauder’s routines.

To begin with, the following Table 5.1 illustrates the numerical size of the problems we need to

consider even for relatively small dimensions and degrees.

Table 5.1: Dimensions of the graded parts of Hn
dR(U/S)

d
n

2 3 4

3
k 1 2 3 1 2 3 4 1 2 3 4 5
|Bk| 1 1 0 0 6 0 0 0 5 5 0 0

rankFk 1 10 28 0 10 56 165 0 5 70 330 1001

4
k 1 2 3 1 2 3 4 1 2 3 4 5
|Bk| 3 3 0 1 19 1 0 0 30 30 0 0

rankFk 3 21 55 1 35 165 455 0 35 330 1365 3876

5
k 1 2 3 1 2 3 4 1 2 3 4 5
|Bk| 6 6 0 4 44 4 0 1 101 101 1 0

rankFk 6 36 91 4 84 364 969 1 126 1001 3876 10626

1Specifically, we used the routines GriffithsRed-v1.4.m and ConnMatrix-v1.4.m.
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5.1 A toy example

We begin by giving many details of the computation in the case of the toy example given by

P (X,Y, Z) = X3 + Y 3 + Z3 + tXY Z, containing the diagonal and only one varying cross-term,

which is even symmetric in all variables.

After computing the derivatives, we find that ` = 1 and u = 2, and hence compute the basis

sets B1 = {1} and B2 = {XY Z}.

The auxiliary matrix ∆2 is computed as

3 0 0 0 0 0 0 0 0
0 3 0 0 0 0 t 0 0
0 0 0 3 0 0 0 t 0
0 0 0 0 3 0 0 0 0
0 0 3 t 0 0 0 0 0
0 t 0 0 0 3 0 0 0
0 0 0 0 0 t 3 0 0
0 0 t 0 0 0 0 3 0
0 0 0 0 0 0 0 0 3


(5.1)

but in this initial form it still has three zero entries on the diagonal. The permutation P0 such

that P0A has a zero-free diagonal is given by the cycle (3 5 4). The subsequent permutation to

block-triangular form is given by (2 6 4)(3 7)(5 8). Together they transform ∆2 to Q0P0∆2Q
t
0 which

is 

3 0 0 0 0 0 0 0 0
0 3 0 t 0 0 0 0 0
0 t 3 0 0 0 0 0 0
0 0 t 3 0 0 0 0 0
0 0 0 0 3 0 t 0 0
0 0 0 0 t 3 0 0 0
0 0 0 0 0 t 3 0 0
0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 3


. (5.2)

The above matrix is block-triangular with block sizes 1, 3, 3, 1, 1. The following LUP decomposition

performed on the two 3× 3 submatrices yields the matrix

3 0 0 0 0 0 0 0 0
0 3 0 t 0 0 0 0 0
0 t/3 3 −t2/3 0 0 0 0 0
0 0 t/3 (t3 + 27)/9 0 0 0 0 0
0 0 0 0 3 0 t 0 0
0 0 0 0 t/3 3 −t2/3 0 0
0 0 0 0 0 t/3 (t3 + 27)/9 0 0
0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 3


. (5.3)

We do not include full details for the computation of ∆3, which is a 28×28 matrix. However, in
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order to illustrate the usefulness of applying sparse rather then dense matrix techniques, we point

out that the corresponding block sizes partition 28 as 19× 1 + 3× 3.

In order to compute the Gauss–Manin connection matrix with respect to our choice of basis,

we need to reduce the two elements −XY ZΩ/P 2 and −2X2Y 2Z2Ω/P 3 corresponding to the basis

elements Ω/P and XY ZΩ/P 2, respectively. This gives

∇GM
(Ω
P

)
=
−XY ZΩ

P
, (5.4)

∇GM
(XY ZΩ

P 2

)
=
−2X2Y 2Z2Ω

P 3
≡ t/(t3 + 27)Ω

P
+
−3t2/(t3 + 27)Ω

P 2
. (5.5)

Finally, the run-time and memory requirements of the Magma routines and the new C imple-

mentation are given by 0.0035s and 0.00032s as well as 7.32MB and 136KB, respectively.

5.2 Quartic surfaces

We now consider a sequence of quartic surfaces with an increasing number of cross-terms. This

highlights the practical limitations of the previous Magma code and demonstrates the usefulness

of the approach investigated in this thesis.

From Table 5.1 we see that |B1| = 1, |B2| = 19, |B3| = 1 and |R2| = 16, |R3| = 164, |R4| = 455.

We are particularly interested in how these last three cardinalities are partitioned by the block-

triangularisation since this provides a measure of the usefulness of the sparse matrix techniques

employed here. For a partition of the matrix ∆k into Nk diagonal blocks of size n1, . . . , nNk , we

include the two quantities αk = |Rk|2 /(n2
1 + · · ·+n2

Nk
) and βk = |Rk|3 /(n3

1 + · · ·+n3
Nk

), rounded to

the nearest integer. These two quantities give an indication of the improvement in run-time gained

by employing sparse matrix techniques instead of standard dense matrix techniques. The former

value pertains to the quadratic time routines, which in particular includes the solving of linear

systems as part of the reduction process, whereas the latter is relevant for the LUP decomposition,

which in the current implementation requires cubic time.

5.2.1 A quartic surface with one cross-term

We consider the family of surfaces given by

W 4 +X4 + Y 4 + Z4 + tWXY Z. (5.6)

The partitions we obtain are 16 = 16× 1, 164 = 104× 1 + 15× 4 and 455 = 391× 1 + 16× 4, which

yield values α = (αk)3k=1 = (16, 78, 319) and β = (βk)3k=1 = (256, 4145, 66570).
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As expected from the small number of terms and high level of symmetry, both Lauder’s Magma

routine and the new implementation compute this quickly in 0.045s and 0.0138s, requiring 7.71MB

and 1.35MB of memory, respectively.

We also note that Gerkmann [7, p. 61] mentions a run-time of about 7s in this case.

5.2.2 A quartic surface with three cross-terms

We consider the family of surfaces given by

W 4 +X4 + Y 4 + Z4 + t(W 3X +WY Z2 +XZ3). (5.7)

The block sizes give rise to partitions 16 = 16 × 1, 164 = 70 × 1 + 8 × 4 + 1 × 62 and 455 =

253× 1 + 33× 4 + 1× 70, from which we find α = (16, 6, 36) and β = (256, 18, 273).

The time and space requirements for the two routines are 27.88s, 2.013s and 18.84MB, 5.29MB.

In particular, the new routine is about 14 times faster.

5.2.3 A quartic surface with four cross-terms

We consider the family of surfaces given by

W 4 +X4 + Y 4 + Z4 + t(W 3X +WY Z2 +XZ3 +WXY Z). (5.8)

The partitions we obtain are 16 = 16×1, 164 = 53×1+4×4+1×95 and 455 = 231×1+29×4+1×108.

This gives α = (16, 3, 17) and β = (256, 5, 75).

The time and space requirements for the two routines are 4190.610s, 24.97s and 238.38MB,

16.62MB. At this point, the new implementation is already more than 165 times faster.

5.2.4 A quartic surface with six cross-terms

We consider the family of surfaces given by

W 4 +X4 + Y 4 + Z4 + t(2W 3X + 7W 2XY − 11WX2Y + 13X2Y Z + 17X2Z2 −WXY Z). (5.9)

The block-triangularisations result in the following partitions of the ranks of the auxiliary matrices:

16 = 14×1+1×2, 164 = 38×1+4×2+4×4+1×102 and 455 = 181×1+18×2+22×4+7×5+1×115.

We hence find that α = (14, 3, 15) and β = (186, 4, 62).

For this example, Lauder’s Magma routine takes 4.52 days and requires 3.57GB of memory.

The new implementation completes the computation in 277.02s and uses 66.7MB. That is, the new

implementation is more than 1400 times faster.
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5.2.5 A quartic surface with seven cross-terms

We consider the family of surfaces given by

W 4 +X4 + Y 4 + Z4 + t(−3W 3X + 5W 3Y + 7W 2XY

− 23WX2Y − 29X2Y Z + 31Y 2Z2 − 37WXY Z) (5.10)

In this case, we obtain the partitions 16 = 14 × 1 + 1 × 2, 164 = 32 × 1 + 1 × 4 + 1 × 128 and

455 = 152× 1 + 15× 4 + 3× 28 + 1× 159 and values α = (14, 2, 7) and β = (186, 2, 23).

The previous Magma routine solved this example in 34.04 days using 12.5GB of memory. In

contrast to this, the run-time of the new C implementation has only doubled when compared to the

previous example and is 527.28s, with a memory requirement of 126.5MB.

5.3 A quintic surface

We finally give an example which begins to show limitations of the approach discussed in this work:

(1− t)(W 5 +X5 + Y 5 + Z5) + t
(
(WXZ + Y 3)(W 2 +XY + Z2)

)
. (5.11)

For this example, the new implementation requires about 190 minutes and 979.5MB. The author

did not obtain the corresponding data from Lauder’s Magma routine since it was terminated after

running for over 34 days and using nearly 5GB of memory.





Chapter 6

Further Improvements

In this chapter, we briefly discuss possible further improvements for the computation of the Gauss–

Manin connection matrix based on this work. We present these in an increasing level of abstraction.

Basic operations in the base field. The author has written a fast implementation of the

rational function field Q(t) based on the C library FLINT [10]. While Henrici’s algorithms [12] for

addition and multiplication in quotient fields lead to a fast implementation of these basic operations,

for our application it would be more appropriate to consider the ternary operation x ← x + yz as

the basic operation.

Multivariate polynomial rings. The current implementation of multivariate polynomials is

based on very fast monomials packed into single words. On top of these, only the classical sparse

algorithms for polynomial addition and multiplication are implemented. The degree and the number

of terms of the polynomials we consider are likely to be large enough for the implementation of more

advanced algorithms to be beneficial.

Auxiliary matrices. The auxiliary matrices are implemented using a hybrid data structure

between sparse and dense matrices. More specifically, while the entries are stored in a dense matrix,

we also maintain a sparse data structure for the structural information. Currently, the LUP decom-

position and the solving of linear systems is carried out using dense techniques. Since when applying

this implementation to curves or surfaces the reduction process typically takes up between 60% and

70% of the run-time, almost all of which is contributed by the solving of linear systems, a purely

sparse approach for all but the smallest (sparse) blocks would lead to an improved performance.

Multi-modular techniques. The sizes of the integer coefficients of the rational functions that

we consider are large enough to make a multi-modular approach appear interesting. Moreover,

since FLINT also contains a fast implementation for the polynomial ring Fp[t], where p is a prime

number, it would be straightforward to modify the existing implementation. However, it remains

to obtain a computationally feasible bound on the number and sizes of the primes that we need to
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incorporate in the reconstruction process via the Chinese remainder theorem.

Parallelisation. We note that the computation and the pre-processing of the auxiliary matrices

∆k are independent for varying k. Moreover, the reduction of poles of the images ∇GM (ω) are

independent for varying basis elements ω ∈ B1 ∪ · · · ∪ Bn. When one is interested in computing

the connection for a single hypersurface, these above tasks should be handled in parallel. However,

when one is interested in computing the connection for many different hypersurfaces as part of a

numerical experiment, the parallelisation should be realised with coarser granularity.
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